逆P-集合是把动态特性引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。逆P-集合是由内逆P-集合X珔F与外逆P-集合X珔F珔构成的集合对;或者,(X珔F,X珔F珔)是逆P-集合。逆P-集合具有动态特性。逆P-推理是逆P-集合生成的...逆P-集合是把动态特性引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。逆P-集合是由内逆P-集合X珔F与外逆P-集合X珔F珔构成的集合对;或者,(X珔F,X珔F珔)是逆P-集合。逆P-集合具有动态特性。逆P-推理是逆P-集合生成的一个动态推理,它是由内逆P-推理与外逆P-推理共同构成的。利用逆P-集合和逆P-推理,给出逆P-等价类、内逆P-等价类和外逆P-等价类概念,逆P-等价类与普通等价类的关系,逆P-等价类的逆P-推理分离-还原与分离-还原定理。在静态-动态条件下,普通等价类是逆P-等价类的特例,逆P-等价类是普通等价类的一般形式。展开更多
文摘逆P-集合是把动态特性引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。逆P-集合是由内逆P-集合X珔F与外逆P-集合X珔F珔构成的集合对;或者,(X珔F,X珔F珔)是逆P-集合。逆P-集合具有动态特性。逆P-推理是逆P-集合生成的一个动态推理,它是由内逆P-推理与外逆P-推理共同构成的。利用逆P-集合和逆P-推理,给出逆P-等价类、内逆P-等价类和外逆P-等价类概念,逆P-等价类与普通等价类的关系,逆P-等价类的逆P-推理分离-还原与分离-还原定理。在静态-动态条件下,普通等价类是逆P-等价类的特例,逆P-等价类是普通等价类的一般形式。