Using the idea of Atanassov, we define the notion of intuitionistic Menger spaces as a netural generalizations of Menger spaces due to Menger. We also obtain a new generalized contraction mapping and utilize this cont...Using the idea of Atanassov, we define the notion of intuitionistic Menger spaces as a netural generalizations of Menger spaces due to Menger. We also obtain a new generalized contraction mapping and utilize this contraction mapping to prove the existance theorems of solutions to differential equations in intuitionistic Menger spaces.展开更多
In this paper, first introduce and define an intuitionistic Menger inner product space, and then, obtain a new fixed point theorem in a complete intuitionistic Menger inner product space. As an application, the result...In this paper, first introduce and define an intuitionistic Menger inner product space, and then, obtain a new fixed point theorem in a complete intuitionistic Menger inner product space. As an application, the results are used to study the existence and uniqueness of the solution to a linear Volterra integral equation.展开更多
文摘Using the idea of Atanassov, we define the notion of intuitionistic Menger spaces as a netural generalizations of Menger spaces due to Menger. We also obtain a new generalized contraction mapping and utilize this contraction mapping to prove the existance theorems of solutions to differential equations in intuitionistic Menger spaces.
基金Project supported by the Natural Science Foundation of Yibin University (No. 2009Z01)
文摘In this paper, first introduce and define an intuitionistic Menger inner product space, and then, obtain a new fixed point theorem in a complete intuitionistic Menger inner product space. As an application, the results are used to study the existence and uniqueness of the solution to a linear Volterra integral equation.