The interfacial heat transfer behavior at the metalJshot sleeve interface in the high pressure die casting (HPDC) process of AZ91D alloy is carefully investigated. Based on the temperature measurements along the sho...The interfacial heat transfer behavior at the metalJshot sleeve interface in the high pressure die casting (HPDC) process of AZ91D alloy is carefully investigated. Based on the temperature measurements along the shot sleeve, inverse method has been developed to determine the interfacial heat transfer coefficient in the shot sleeve. Under static condition, Interracial heat transfer coefficient (IHTC) peak values are 11.9, 7,3, 8.33kWm-2K-1 at pouring zone (S2), middle zone (S5), and end zone (510), respectively. During the casting process, the IHTC curve displays a second peak of 6.1 kWm-2 K-1 at middle zone during the casting process at a slow speed of 0.3 ms 1 Subsequently, when the high speed started, the IHTC curve reached a second peal〈 of 12.9 kW m-2K-1 at end zone. Furthermore, under different slow casting speeds, both the calculated initial temperature (TIDs) and the maximum temperature (Tsimax) of shot sleeve surface first decrease from 0.1 ms-1 to 0.3 ms-1, but increase again from 0.3 ms-1 to 0.6 ms-1. This result agrees with the experimental results obtained in a series of "plate-shape" casting experiments under different slow speeds, which reveals that the amount of ESCs decreases to the minimum values at 0.3 m s-1 and increase again with the increasing casting slow speed.展开更多
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
A low operating pressure nanofiltration membrane is prepared by interfacial polymerization between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC) using PVC hollow fiber membrane as supporting. A series of ...A low operating pressure nanofiltration membrane is prepared by interfacial polymerization between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC) using PVC hollow fiber membrane as supporting. A series of PVC nanofiltration membranes with different molecular weight cutoff (MWCO) can be obtained by controlling preparation conditions. Chemical and morphological characterization of the membrane surface was carried out by FTIR-ATR and SEM. MWCO was characterized by filtration experiments. The preparation conditions were investigated in detail. At the optimized conditions (40 min air-dried time, aqueous phase containing 0.5% MPDA, 0.05% SDS and 0.6% acid absorbent, oil phase containing 0.3% TMC, and 1 min reaction time), under 0.3 MPa, water flux of the gained nanofiltration membrane reaches 17.8 L/m2-h, and the rejection rates of methyl orange and MgSO4 are more than 90% and 60%, respectively.展开更多
The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is comp...The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.展开更多
Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomen...Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomenon, a two-equation Lattice Boltzmann Method (LBM) is proposed to simulate the velocity and the concentra-tion distributions of Rayleigh convection generated in the CO2 absorptlon into ethanol liquid.The simulated results on velocity distributions are experimentally verified by PIV (particle image velocimetry technique) measurements. In order to simplify the analysis, the convection in the simulation as well as in the experiment, the Rayleigh convection was manipulated into a single down flow pattern, The simulated results show that the concentration contours agree qualitatively with the schlieren images in the literature. The experimental and simulated results show that theRayleigh convection under investigation is dominated by the flow in the downward direction and impels exchange of the liquid between the interfacial vicinity and the liquid bulk promoting the renewal of interfacial liquid, and hence enhances mass transfer. The comparison between the simulated and experimental results demonstrated that the proposed LBM is a promising alternative for simulating mass transfer induced Rayleigh convection.展开更多
Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., ...Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.展开更多
Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and roo...Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and room-temperature properties of the joints were investigated. The results show that the TiN particles are gen- erally well dispersed in the Ag-Cu eutectic base and the interface between them is both clean and com-pact. Changes in the TiN volume fractions from 0 to 20% exert no noticeable effect on the interfacial reac-tion between Ag-Cu-Ti and the substrates. Other bonding parameters being constant, the TiN volume frac-tion in the filler material plays a key role in the joint properties. For TiN volume fractions below 20%, the joints are reinforced, especially joints with 5% and 20% TiN. The average shearing strength of joints with 5% TiN is 200.8 MPa, 30% higher than that of joints with no TiN (154.1 MPa). However, for TiN volumes frac- tions above 20%, the joint strengths decrease.展开更多
Cavity growth in ductile metal materials under dynamic loading is investigated via the material point method. Two typical cavity effects in the region subjected to rarefaction wave are identified: (i) part of mater...Cavity growth in ductile metal materials under dynamic loading is investigated via the material point method. Two typical cavity effects in the region subjected to rarefaction wave are identified: (i) part of material particles flow away from the cavity in comparison to the initial loading velocity, (ii) local regions show weaker negative or even positive pressures. Neighboring cavities interact via coalescence of isobaric contours. The growth of cavity under tension shows staged behaviors. After the initial slow stage, the volume and the dimensions in both the tensile and transverse directions show linear growth rate with time until the global tensile wave arrives at the upper free surface. It is interesting that the growth rate in the transverse direction is faster than that in the tensile direction. The volume growth rate linearly increases with the initial tensile velocity. After the global tensile wave passed the cavity, both the maximum particle velocity in the tensile direction and the maximum particle velocity in the opposite direction increase logarithmically with the initial tensile speed. The shock wave reflected back from the cavity and compression wave from the free surface induce the initial behavior of interracial instabilities such as the Richtmyer-Meshkov instability, which is mainly responsible for the irregularity in the morphology of deformed cavity. The local temperatures and distribution of hot spots are determined by the plastic work. Compared with the dynamical process, the heat conduction is much slower.展开更多
Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to ...Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to the heat flow direction. The large anisotropic intensity may compete to determine the stability of the planar interface. The destabilizing effect or the stabilizing effect depends on the misorientation. Moreover, the interface morphology of initial instability is also affected by the surface tension anisotropy.展开更多
Damping improvement in composite structures via introducing nanofillers generally has remarkable negative effects on the other mechanical properties. Therefore, in the present work, SiC and A1203 nanoparticles' infus...Damping improvement in composite structures via introducing nanofillers generally has remarkable negative effects on the other mechanical properties. Therefore, in the present work, SiC and A1203 nanoparticles' infusion effects on the flexural, interracial and vibration properties of epoxy matrix and glass fiber reinforced epoxy (GFR/E) laminates were investigated. Unidirectional (UD-GFR/E) and quasi-isotropic (QI-GFR/E) laminates with [0/± 45/90]s and [90/±45/0]s stack- ing sequences were hybridized by the optimum nanoparticles percentages. Results from off-axis flexural strengths of UD-GFR/E demonstrate good fiber/nanophased-matrix interracial bonding. The interlaminar shear stress between the adjacent layers with different orientations/strains of duc- tile QI-GFR/SiC/E laminates results in decreasing the flexural strengths respectively by 24.3% and 9.1% for [0/±45/90]s and [90/± 45/0]s stacking sequences and increasing the dissipated interfacial friction energy and thus the damping by 105.7% and 26.1%. The damping of QI-GFR/E, QI-GFR/SiC/E and QI-GFR/AI203/E laminates with [90/± 45/0]s stacking sequence was increased by 111.4%, 29.7% and 32.9% respectively compared to [0/± 45/90]s stacking sequence.展开更多
A series of conjugated polymers based on PFS derivatives with n-conjugated 5-(9H-fluoren-2-yl)-2,2'-bithiophene (fluorene-alt-bithiophene) backbones, namely PFS-3C, PFS-4C and PFS-6C, were synthesized for their u...A series of conjugated polymers based on PFS derivatives with n-conjugated 5-(9H-fluoren-2-yl)-2,2'-bithiophene (fluorene-alt-bithiophene) backbones, namely PFS-3C, PFS-4C and PFS-6C, were synthesized for their use as the anode interfacial layers (AILs) in the efficient fullerene-free polymer solar ceils (PSCs). Alkyl sulfonate pendants with different lengths of alkyl side chains were introduced in the three polymers in order to investigate the effect of the alkyl chain length on the anode modification. The obtained three polymers exhibited similar absorption bands and energy levels, indicating that changing the length of the alkyl side chains did not affect the optoelectronic properties of the conjugated polymers. Based on the PBDB-T:ITIC active layer, we fabricated the fullerene-free PSCs using the three polymers as the AILs. The superior performance of the fullerene-free PSC device was achieved when PFS-4C was used as the AIL, showing a power conversion efficiency (PCE) of 10.54%. The high performance of the PFS-4C-modified device could be ascribed to the high transmittance, suitable work-function (WF) and smooth surface of PFS-4C. To the best of our knowledge, the PCE obtained in the PFS-4C-modified device is among the highest PCE values in the fullerene-free PSCs at present. These results demonstrate that the PFS derivatives are promising candidates in serving as the AIL materials for high-performance fullerene-free PSCs.展开更多
For many rapid or near-rapid solidification processes, the interracial heat transfer between the melt and the substrate is a key issue on the cooling and solidification rate of castings. For the purpose of controlling...For many rapid or near-rapid solidification processes, the interracial heat transfer between the melt and the substrate is a key issue on the cooling and solidification rate of castings. For the purpose of controlling and adjusting of the interfacial thermal resistance, the effects of C/BN, Zn and organic coatings on the instantaneous interracial heat flux and the solidified structure of AISI304 stainless steel solidification on copper substrate have been investiga- ted by using an experimental simulator. The results show that C/BN coatings can improve the uniformity of heat flux and solidified structure; Zn coating can increase the heat flux and solidification rate in the growth stage of the solidified shell; organic coating will decrease the heat flux and the solidification rate and make re-melted structure on the surface of the solidified shell.展开更多
Two types of dendrite tip splitting including dendrite orientation transition and twinned-like dendrites in Fe-C alloys were investigated by phase-field method. In equiaxed growth, the possible dendrite growth directi...Two types of dendrite tip splitting including dendrite orientation transition and twinned-like dendrites in Fe-C alloys were investigated by phase-field method. In equiaxed growth, the possible dendrite growth directions and the effect of supersaturation on tip splitting were discussed; the dendrite orientation transition was observed, and it was found that the orientation regions of anisotropy parameters were reduced from three to two with increasing the supersaturation, which was due to the effect of interracial anisotropy controlled by the solute in front of S/L interface changing with the increase of supersaturation. In directional solidification, it was found that the twinned like dendrites were formed with the fixed anisotropy couples and no seaweed dendrites were observed; these were concluded from the results of competition between process anisotropy and inherent anisotropy. The formation process of twinned-like dendrite was investigated by tip splitting phenomenon, which was related to the chan ges of dendrite tips growth velocity. Then, the critical speed of tips splitting and solute concentration of twinned-like dendrites were investigated, and a new type of microsegregation in Fe-C alloys was proposed to supplement the dendrite growth theories.展开更多
Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nw...Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interracial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.展开更多
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The...This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.展开更多
A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into...A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes, wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interracial waves (Thorpe. 1968a.Trans R Soc London, 263A:563~614) and standing interracial waves (Thorpe. 1968b. J Fluid Mech, 32:489-528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) if the density of the upper layer is much smaller than that of the lower layer.展开更多
Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron ph...Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.展开更多
基金financially supported by the National Major Science and Technology Program of China(No.2012ZX04012011)the National Natural Science Foundation of China(No.51275269)
文摘The interfacial heat transfer behavior at the metalJshot sleeve interface in the high pressure die casting (HPDC) process of AZ91D alloy is carefully investigated. Based on the temperature measurements along the shot sleeve, inverse method has been developed to determine the interfacial heat transfer coefficient in the shot sleeve. Under static condition, Interracial heat transfer coefficient (IHTC) peak values are 11.9, 7,3, 8.33kWm-2K-1 at pouring zone (S2), middle zone (S5), and end zone (510), respectively. During the casting process, the IHTC curve displays a second peak of 6.1 kWm-2 K-1 at middle zone during the casting process at a slow speed of 0.3 ms 1 Subsequently, when the high speed started, the IHTC curve reached a second peal〈 of 12.9 kW m-2K-1 at end zone. Furthermore, under different slow casting speeds, both the calculated initial temperature (TIDs) and the maximum temperature (Tsimax) of shot sleeve surface first decrease from 0.1 ms-1 to 0.3 ms-1, but increase again from 0.3 ms-1 to 0.6 ms-1. This result agrees with the experimental results obtained in a series of "plate-shape" casting experiments under different slow speeds, which reveals that the amount of ESCs decreases to the minimum values at 0.3 m s-1 and increase again with the increasing casting slow speed.
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.
基金financially supported by the National Natural Science Foundation of China(No.20974094)National 973 Program(No.2009CB623402)Postdoctoral Science Foundation funded project of Zhejiang Province,China(Bsh1202045)
文摘A low operating pressure nanofiltration membrane is prepared by interfacial polymerization between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC) using PVC hollow fiber membrane as supporting. A series of PVC nanofiltration membranes with different molecular weight cutoff (MWCO) can be obtained by controlling preparation conditions. Chemical and morphological characterization of the membrane surface was carried out by FTIR-ATR and SEM. MWCO was characterized by filtration experiments. The preparation conditions were investigated in detail. At the optimized conditions (40 min air-dried time, aqueous phase containing 0.5% MPDA, 0.05% SDS and 0.6% acid absorbent, oil phase containing 0.3% TMC, and 1 min reaction time), under 0.3 MPa, water flux of the gained nanofiltration membrane reaches 17.8 L/m2-h, and the rejection rates of methyl orange and MgSO4 are more than 90% and 60%, respectively.
基金sup port provided by the Key Project of Ministry of Edu-cation of P.R.China(Grant No.02089)the National Key Grant Program of Basic Research De-velopment(Grant No.2002CCA01200).
文摘The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.
基金Supported by the National Natural Science Foundation of China (20736005).
文摘Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomenon, a two-equation Lattice Boltzmann Method (LBM) is proposed to simulate the velocity and the concentra-tion distributions of Rayleigh convection generated in the CO2 absorptlon into ethanol liquid.The simulated results on velocity distributions are experimentally verified by PIV (particle image velocimetry technique) measurements. In order to simplify the analysis, the convection in the simulation as well as in the experiment, the Rayleigh convection was manipulated into a single down flow pattern, The simulated results show that the concentration contours agree qualitatively with the schlieren images in the literature. The experimental and simulated results show that theRayleigh convection under investigation is dominated by the flow in the downward direction and impels exchange of the liquid between the interfacial vicinity and the liquid bulk promoting the renewal of interfacial liquid, and hence enhances mass transfer. The comparison between the simulated and experimental results demonstrated that the proposed LBM is a promising alternative for simulating mass transfer induced Rayleigh convection.
基金Supported by the Trans-century Training Programme Foundation for the Talents by the Ministry of Education of China (No.2002-48).
文摘Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.
基金Supported by the National Natural Science Foundation of China (No. 50075046)
文摘Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and room-temperature properties of the joints were investigated. The results show that the TiN particles are gen- erally well dispersed in the Ag-Cu eutectic base and the interface between them is both clean and com-pact. Changes in the TiN volume fractions from 0 to 20% exert no noticeable effect on the interfacial reac-tion between Ag-Cu-Ti and the substrates. Other bonding parameters being constant, the TiN volume frac-tion in the filler material plays a key role in the joint properties. For TiN volume fractions below 20%, the joints are reinforced, especially joints with 5% and 20% TiN. The average shearing strength of joints with 5% TiN is 200.8 MPa, 30% higher than that of joints with no TiN (154.1 MPa). However, for TiN volumes frac- tions above 20%, the joint strengths decrease.
文摘Cavity growth in ductile metal materials under dynamic loading is investigated via the material point method. Two typical cavity effects in the region subjected to rarefaction wave are identified: (i) part of material particles flow away from the cavity in comparison to the initial loading velocity, (ii) local regions show weaker negative or even positive pressures. Neighboring cavities interact via coalescence of isobaric contours. The growth of cavity under tension shows staged behaviors. After the initial slow stage, the volume and the dimensions in both the tensile and transverse directions show linear growth rate with time until the global tensile wave arrives at the upper free surface. It is interesting that the growth rate in the transverse direction is faster than that in the tensile direction. The volume growth rate linearly increases with the initial tensile velocity. After the global tensile wave passed the cavity, both the maximum particle velocity in the tensile direction and the maximum particle velocity in the opposite direction increase logarithmically with the initial tensile speed. The shock wave reflected back from the cavity and compression wave from the free surface induce the initial behavior of interracial instabilities such as the Richtmyer-Meshkov instability, which is mainly responsible for the irregularity in the morphology of deformed cavity. The local temperatures and distribution of hot spots are determined by the plastic work. Compared with the dynamical process, the heat conduction is much slower.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50401013)the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University of China (NWPU) (Grant No. KP200903)
文摘Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to the heat flow direction. The large anisotropic intensity may compete to determine the stability of the planar interface. The destabilizing effect or the stabilizing effect depends on the misorientation. Moreover, the interface morphology of initial instability is also affected by the surface tension anisotropy.
文摘Damping improvement in composite structures via introducing nanofillers generally has remarkable negative effects on the other mechanical properties. Therefore, in the present work, SiC and A1203 nanoparticles' infusion effects on the flexural, interracial and vibration properties of epoxy matrix and glass fiber reinforced epoxy (GFR/E) laminates were investigated. Unidirectional (UD-GFR/E) and quasi-isotropic (QI-GFR/E) laminates with [0/± 45/90]s and [90/±45/0]s stack- ing sequences were hybridized by the optimum nanoparticles percentages. Results from off-axis flexural strengths of UD-GFR/E demonstrate good fiber/nanophased-matrix interracial bonding. The interlaminar shear stress between the adjacent layers with different orientations/strains of duc- tile QI-GFR/SiC/E laminates results in decreasing the flexural strengths respectively by 24.3% and 9.1% for [0/±45/90]s and [90/± 45/0]s stacking sequences and increasing the dissipated interfacial friction energy and thus the damping by 105.7% and 26.1%. The damping of QI-GFR/E, QI-GFR/SiC/E and QI-GFR/AI203/E laminates with [90/± 45/0]s stacking sequence was increased by 111.4%, 29.7% and 32.9% respectively compared to [0/± 45/90]s stacking sequence.
基金financially supported by the National Natural Science Foundation of China(No.21274134)
文摘A series of conjugated polymers based on PFS derivatives with n-conjugated 5-(9H-fluoren-2-yl)-2,2'-bithiophene (fluorene-alt-bithiophene) backbones, namely PFS-3C, PFS-4C and PFS-6C, were synthesized for their use as the anode interfacial layers (AILs) in the efficient fullerene-free polymer solar ceils (PSCs). Alkyl sulfonate pendants with different lengths of alkyl side chains were introduced in the three polymers in order to investigate the effect of the alkyl chain length on the anode modification. The obtained three polymers exhibited similar absorption bands and energy levels, indicating that changing the length of the alkyl side chains did not affect the optoelectronic properties of the conjugated polymers. Based on the PBDB-T:ITIC active layer, we fabricated the fullerene-free PSCs using the three polymers as the AILs. The superior performance of the fullerene-free PSC device was achieved when PFS-4C was used as the AIL, showing a power conversion efficiency (PCE) of 10.54%. The high performance of the PFS-4C-modified device could be ascribed to the high transmittance, suitable work-function (WF) and smooth surface of PFS-4C. To the best of our knowledge, the PCE obtained in the PFS-4C-modified device is among the highest PCE values in the fullerene-free PSCs at present. These results demonstrate that the PFS derivatives are promising candidates in serving as the AIL materials for high-performance fullerene-free PSCs.
文摘For many rapid or near-rapid solidification processes, the interracial heat transfer between the melt and the substrate is a key issue on the cooling and solidification rate of castings. For the purpose of controlling and adjusting of the interfacial thermal resistance, the effects of C/BN, Zn and organic coatings on the instantaneous interracial heat flux and the solidified structure of AISI304 stainless steel solidification on copper substrate have been investiga- ted by using an experimental simulator. The results show that C/BN coatings can improve the uniformity of heat flux and solidified structure; Zn coating can increase the heat flux and solidification rate in the growth stage of the solidified shell; organic coating will decrease the heat flux and the solidification rate and make re-melted structure on the surface of the solidified shell.
基金funded by International Cooperation Project of the Ministry of Science and Technology of China(2014DFA50320)National Natural Science Foundation of China(51574207,51574206,51204147, 51274175)International Science and Technology Cooperation Project of Shanxi Province of China (2013081017,2012081013)
文摘Two types of dendrite tip splitting including dendrite orientation transition and twinned-like dendrites in Fe-C alloys were investigated by phase-field method. In equiaxed growth, the possible dendrite growth directions and the effect of supersaturation on tip splitting were discussed; the dendrite orientation transition was observed, and it was found that the orientation regions of anisotropy parameters were reduced from three to two with increasing the supersaturation, which was due to the effect of interracial anisotropy controlled by the solute in front of S/L interface changing with the increase of supersaturation. In directional solidification, it was found that the twinned like dendrites were formed with the fixed anisotropy couples and no seaweed dendrites were observed; these were concluded from the results of competition between process anisotropy and inherent anisotropy. The formation process of twinned-like dendrite was investigated by tip splitting phenomenon, which was related to the chan ges of dendrite tips growth velocity. Then, the critical speed of tips splitting and solute concentration of twinned-like dendrites were investigated, and a new type of microsegregation in Fe-C alloys was proposed to supplement the dendrite growth theories.
文摘Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interracial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No 40425015), the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore oil Corporation ("Behaviours of internal waves and their roles on the marine structures") and the National Natural Science Foundation of China (Grant No10461005).
文摘This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.
基金supported by the National Science Foundation for Distinguished Young Scholars of China under contract No.40425015the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore 0il Corporation("Behaviours of internal waves and their roles on the marine stuctures").
文摘A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes, wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interracial waves (Thorpe. 1968a.Trans R Soc London, 263A:563~614) and standing interracial waves (Thorpe. 1968b. J Fluid Mech, 32:489-528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) if the density of the upper layer is much smaller than that of the lower layer.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50730006,50976053,and 50906042)
文摘Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.