机器人已被广泛应用于日常生活之中。路径规划作为机器人的主要技术之一,优秀的路径规划算法能提升机器人的工作效率、降低其使用成本,并为研究机器人的导航打下良好的基础。RRT(rapidly-exploring random trees)算法具有扩展性强的优点...机器人已被广泛应用于日常生活之中。路径规划作为机器人的主要技术之一,优秀的路径规划算法能提升机器人的工作效率、降低其使用成本,并为研究机器人的导航打下良好的基础。RRT(rapidly-exploring random trees)算法具有扩展性强的优点,但存在路径长度并非最优、光滑性差等不足,为此提出反向寻优和三次样条曲线插值以改进算法,并在MATLAB和ROS(robot operating system)系统中仿真。结果表明:改进后的RRT算法能降低路径长度,减少节点数目,提高光滑性,实现了算法的有效性。展开更多
文摘机器人已被广泛应用于日常生活之中。路径规划作为机器人的主要技术之一,优秀的路径规划算法能提升机器人的工作效率、降低其使用成本,并为研究机器人的导航打下良好的基础。RRT(rapidly-exploring random trees)算法具有扩展性强的优点,但存在路径长度并非最优、光滑性差等不足,为此提出反向寻优和三次样条曲线插值以改进算法,并在MATLAB和ROS(robot operating system)系统中仿真。结果表明:改进后的RRT算法能降低路径长度,减少节点数目,提高光滑性,实现了算法的有效性。