AIM: To investigate the association between the configurational and compositional changes of nuclear matrix and the differentiation of carcinoma cells. METHODS: Cells cultured with or without 5 × 10^-3 mmol/L o...AIM: To investigate the association between the configurational and compositional changes of nuclear matrix and the differentiation of carcinoma cells. METHODS: Cells cultured with or without 5 × 10^-3 mmol/L of hexamethylene bisacetamide (HMBA) on Nickel grids were treated by selective extraction and prepared for whole mount observation under electron microscopy. The samples were examined under transmission electron microscope. Nuclear matrix proteins were selectively extracted and subjected to subcellular proteomics study. The protein expression patterns were analyzed by PDQuest software. Spots of differentially expressed nuclear matrix proteins were excised and subjected to in situ digestion with trypsin. The peptides were analyzed by matrix-assisted laser- desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Data were submitted for database searching using Mascot tool (www.matrixscience.com). RESULTS: The nuclear matrix (NM) and intermediate filament (IF) in SMMC-7721 hepatocarcinoma cells were found relatively sparse and arranged irregularly. The nuclear lamina was non-uniform, and two kinds of filaments were not tightly connected. After induction for differentiation by HMBA, the NM-IF filaments were concentrated and distributed uniformly. The heterogeneous population of filaments, including highly branched utrathin filaments could also be seen in the regular meshwork. The connection between the two kinds of filaments and the relatively thin, condensed and sharply demarcated lamina composed of intermediate- sized filaments was relatively fastened. Meanwhile, 21 NM proteins changed remarkably during SMMC-7721 cell differentiation. Four proteins, i.e. mutant Pystl, hypothetical protein, nucleophosminl, and LBP were downregulated, whereas four other proteins, eIF6, p44 subunit, 13-tubulin, and SIN3B were upregulated with the last one, SR2/ASF found only in the differentiated SMMC-7721 cells. CONCLUSION: The induced differentiation of SMMC-7721 cells by HMBA is acco展开更多
The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and...The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.展开更多
The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses...The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geo展开更多
基金Supported by the National Natural Science Foundation of China, No. 30470877
文摘AIM: To investigate the association between the configurational and compositional changes of nuclear matrix and the differentiation of carcinoma cells. METHODS: Cells cultured with or without 5 × 10^-3 mmol/L of hexamethylene bisacetamide (HMBA) on Nickel grids were treated by selective extraction and prepared for whole mount observation under electron microscopy. The samples were examined under transmission electron microscope. Nuclear matrix proteins were selectively extracted and subjected to subcellular proteomics study. The protein expression patterns were analyzed by PDQuest software. Spots of differentially expressed nuclear matrix proteins were excised and subjected to in situ digestion with trypsin. The peptides were analyzed by matrix-assisted laser- desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Data were submitted for database searching using Mascot tool (www.matrixscience.com). RESULTS: The nuclear matrix (NM) and intermediate filament (IF) in SMMC-7721 hepatocarcinoma cells were found relatively sparse and arranged irregularly. The nuclear lamina was non-uniform, and two kinds of filaments were not tightly connected. After induction for differentiation by HMBA, the NM-IF filaments were concentrated and distributed uniformly. The heterogeneous population of filaments, including highly branched utrathin filaments could also be seen in the regular meshwork. The connection between the two kinds of filaments and the relatively thin, condensed and sharply demarcated lamina composed of intermediate- sized filaments was relatively fastened. Meanwhile, 21 NM proteins changed remarkably during SMMC-7721 cell differentiation. Four proteins, i.e. mutant Pystl, hypothetical protein, nucleophosminl, and LBP were downregulated, whereas four other proteins, eIF6, p44 subunit, 13-tubulin, and SIN3B were upregulated with the last one, SR2/ASF found only in the differentiated SMMC-7721 cells. CONCLUSION: The induced differentiation of SMMC-7721 cells by HMBA is acco
文摘The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.
基金This work was funded by a number of scientific research programs,including grants from the National Key Research and Development Program of China,titled‘Evaluation and Optimal Target Selection of Deep Geothermal Resources in the Igneous Province in South China’(Project No.2019YFC0604903)‘Analysis and Geothermal Reservoir Stimulation Methods of Deep High-temperature Geothermal Systems in East China’(Project No.2021YFA0716004)+2 种基金a grant from the Joint Fund Program of the National Natural Science Foundation of China and Sinopec,titled‘Deep Geological Processes and Resource Effects of Basins’(Project No.U20B6001)two grants from the Sinopec Science and Technology Research Program,titled'Single well evaluation of Well Fushenre 1 and study on the potential of deep geothermal resources in Hainan'(Project No.P23131)‘Siting and Target Evaluation of Deep Geothermal Resources in Key Areas of Southeastern China’(Project No.P20041-1).
文摘The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geo