Composite interlayer materials containing active elements was designed, with the aid of EDAX, XRD analysis technology and thermal elastic plastic finite element analysis in 3 demensions. When a suitable composite inte...Composite interlayer materials containing active elements was designed, with the aid of EDAX, XRD analysis technology and thermal elastic plastic finite element analysis in 3 demensions. When a suitable composite interlayer material was adopted in the diffusion bonding of HPSN to K 500, the bending strength of the joints would be up to 216 MPa and 218 MPa at room temperature and 800℃ respectively.展开更多
将硼酸和还原氧化石墨烯在高温下热解,制得硼掺杂石墨烯BGE,并用于硫正极和隔膜之间的夹层材料。形貌结构表征证明,硼原子被成功掺杂到石墨烯结构中。电化学测试表明,BGE夹层提高了电极导电性。得益于其对多硫化物的物理拦截和化学吸附...将硼酸和还原氧化石墨烯在高温下热解,制得硼掺杂石墨烯BGE,并用于硫正极和隔膜之间的夹层材料。形貌结构表征证明,硼原子被成功掺杂到石墨烯结构中。电化学测试表明,BGE夹层提高了电极导电性。得益于其对多硫化物的物理拦截和化学吸附功能特点,BGE夹层的采用提高了电池的倍率性能,取得了在10C下500 m Ah·g-1的放电比容量。展开更多
文摘Composite interlayer materials containing active elements was designed, with the aid of EDAX, XRD analysis technology and thermal elastic plastic finite element analysis in 3 demensions. When a suitable composite interlayer material was adopted in the diffusion bonding of HPSN to K 500, the bending strength of the joints would be up to 216 MPa and 218 MPa at room temperature and 800℃ respectively.
文摘将硼酸和还原氧化石墨烯在高温下热解,制得硼掺杂石墨烯BGE,并用于硫正极和隔膜之间的夹层材料。形貌结构表征证明,硼原子被成功掺杂到石墨烯结构中。电化学测试表明,BGE夹层提高了电极导电性。得益于其对多硫化物的物理拦截和化学吸附功能特点,BGE夹层的采用提高了电池的倍率性能,取得了在10C下500 m Ah·g-1的放电比容量。