The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circu...The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR.展开更多
基于干涉合成孔径雷达(Interferometric SAR,InSAR)技术生成高精度数字高程模型(Digital ElevationModel,DEM),需要进行干涉定标。繁重的地面控制点(Ground Control Points,GCPs)布放不利于InSAR大区域地形测绘的自动化。该文介绍一种稀...基于干涉合成孔径雷达(Interferometric SAR,InSAR)技术生成高精度数字高程模型(Digital ElevationModel,DEM),需要进行干涉定标。繁重的地面控制点(Ground Control Points,GCPs)布放不利于InSAR大区域地形测绘的自动化。该文介绍一种稀疏GCPs下,基于自动提取的连接点(Tie Points,TPs),利用最小二乘平差原理,实现InSAR区域网内多景相互重叠DEM的同时重建方法。通过改变参与重建的TPs数目,用X波段InSAR实测数据的实验验证了该文方法的有效性。展开更多
The coscismic deformation produced by 1998 earthquake (M8 = 6.2) in Zhangbei-Shangyi of northern China is measured by the differential synthetic aperture radar interferometry (D-InSAR) technique using the European Rem...The coscismic deformation produced by 1998 earthquake (M8 = 6.2) in Zhangbei-Shangyi of northern China is measured by the differential synthetic aperture radar interferometry (D-InSAR) technique using the European Remote Sensing satellite (ERS) SAR data. Interferograms are constructed from the ERS-1/2 SAR data by the three-pass method. The line-of-sight displacement map indicates that the deformation center of the earthquake is located at E114°20’, N40°57’, with the maximum uplift of 25 cm. The extent of the displacement is around 300 km2. The focal mechanism and earthquake-induced structures are analyzed based on the spatial distribution of the deformation. The results give new insights into the seismic mechanism study.展开更多
该文基于TerraSAR-X/TanDEM-X(TSX/TDX)双基升降轨数据,首先采用非局部干涉(Non Local Interferometric SAR,NL-InSAR)相位滤波分别得到单航过升轨和降轨模式下的高分辨率DEM。在此基础上,基于NL-InSAR估计得到的较准确相干系数,提出一...该文基于TerraSAR-X/TanDEM-X(TSX/TDX)双基升降轨数据,首先采用非局部干涉(Non Local Interferometric SAR,NL-InSAR)相位滤波分别得到单航过升轨和降轨模式下的高分辨率DEM。在此基础上,基于NL-InSAR估计得到的较准确相干系数,提出一种升降轨DEM融合方法,恢复SAR侧视成像造成的几何畸变,提高DEM重建精度。该文采用两幅北京地区的TSX/TDX升降轨干涉对进行融合处理,结果表明,在地形复杂地区的叠掩和阴影等无效区域,融合之后的DEM无效点数明显减少。经统计,融合后无效点数比例由升轨、降轨的4.93%和4.52%降低到1.34%。同时,融合DEM的精度相比于升轨的6.74 m提高了8.7%、相比于降轨的6.67 m提高了9.6%,融合后高程精度达到6.09 m。展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR.
基金the National Key Basic Research Program (Grant No. G1998040703) and the CAS Knowledge Innovation Key Project. The ERS-1/2 SAR data were provided by ESA for the ERS Project (ERS A03-374).
文摘The coscismic deformation produced by 1998 earthquake (M8 = 6.2) in Zhangbei-Shangyi of northern China is measured by the differential synthetic aperture radar interferometry (D-InSAR) technique using the European Remote Sensing satellite (ERS) SAR data. Interferograms are constructed from the ERS-1/2 SAR data by the three-pass method. The line-of-sight displacement map indicates that the deformation center of the earthquake is located at E114°20’, N40°57’, with the maximum uplift of 25 cm. The extent of the displacement is around 300 km2. The focal mechanism and earthquake-induced structures are analyzed based on the spatial distribution of the deformation. The results give new insights into the seismic mechanism study.