The transient radial shearing interferometry technique based on fast Fourier transform(FFT)provides a means for the measurement of the wavefront phase of transient light field.However,which factors affect the spatial ...The transient radial shearing interferometry technique based on fast Fourier transform(FFT)provides a means for the measurement of the wavefront phase of transient light field.However,which factors affect the spatial bandwidth of the wavefront phase measurement of this technology and how to achieve high-precision measurement of the broad-band transient wavefront phase are problems that need to be studied further.To this end,a theoretical model of phase-retrieved bandwidth of radial shearing interferometry is established in this paper.The influence of the spatial carrier frequency and the calculation window on phase-retrieved bandwidth is analyzed,and the optimal carrier frequency and calculation window are obtained.On this basis,a broad-band transient radial shearing interference phase-retrieval method based on chirp Z transform(CZT)is proposed,and the corresponding algorithm is given.Through theoretical simulation,a known phase is used to generate the interferogram and it is retrieved by the traditional method and the proposed method respectively.The residual wavefront RMS of the traditional method is 0.146λ,and it is 0.037λfor the proposed method,which manifests an improvement of accuracy by an order of magnitude.At the same time,different levels of signal-to-noise ratios(SNRs)from 50 dB to 10 dB of the interferogram are simulated,and the RMS of the residual wavefront is from 0.040λto 0.066λ.In terms of experiments,an experimental verification device based on a phase-only spatial light modulator is built,and the known phase on the modulator is retrieved from the actual interferogram.The RMS of the residual wavefront retrieved through FFT is 0.112λ,and it decreases to 0.035λthrough CZT.The experimental results verify the effectiveness of the method proposed in this paper.Furthermore,the method can be used in other types of spatial carrier frequency interference,such as lateral shearing interference,rotational shearing interference,flipping shearing interference,and four-wave shearing interference.展开更多
在正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)系统中,当每次处理的OFDM符号较少时,OFDM数据子载波上的调制符号将严重影响单音干扰的参数估计。针对这个问题,本文提出一种利用频域检索的单音干扰消除算法。该算法...在正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)系统中,当每次处理的OFDM符号较少时,OFDM数据子载波上的调制符号将严重影响单音干扰的参数估计。针对这个问题,本文提出一种利用频域检索的单音干扰消除算法。该算法首先利用离散傅里叶变换(DFT,Discrete Fourier Transform)粗估计单音干扰频点,然后通过检索干扰频点附近子载波的调制符号,消除其对单音干扰频域主瓣的影响,提高干扰参数估计精度,从而实现精确的单音干扰重构与消除。仿真结果表明,新算法可以有效地提高单音干扰参数估计精度,并可以降低OFDM系统误码率。展开更多
The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration ...The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration capability and poor versatile of phase detection, the complexity of phase retrieval algorithm, we propose a new phase measurement principle and experimental methods of liquid crystal optical device. It is a phase measurement method based on the combination of phase- shifting interferometer and phase conjugation technology. The deflection characteristics of the liquid crystal device means the device can implement phase modulation to only one direction of polarized light while is completely transparent to orthogonal polarized light. We put forward the phase shift of the orthogonal polarization phase shift interferometer method, using phase shifting interference as well as the combination of phase conjugate means to achieve its phase measurement. So we can retrieves devices modulation phase simply and efficiently combines with phase- shifting interferometer technology.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61705254)the Key Research and Development Program of Shaanxi Province of China(Grant No.2020GY-114).
文摘The transient radial shearing interferometry technique based on fast Fourier transform(FFT)provides a means for the measurement of the wavefront phase of transient light field.However,which factors affect the spatial bandwidth of the wavefront phase measurement of this technology and how to achieve high-precision measurement of the broad-band transient wavefront phase are problems that need to be studied further.To this end,a theoretical model of phase-retrieved bandwidth of radial shearing interferometry is established in this paper.The influence of the spatial carrier frequency and the calculation window on phase-retrieved bandwidth is analyzed,and the optimal carrier frequency and calculation window are obtained.On this basis,a broad-band transient radial shearing interference phase-retrieval method based on chirp Z transform(CZT)is proposed,and the corresponding algorithm is given.Through theoretical simulation,a known phase is used to generate the interferogram and it is retrieved by the traditional method and the proposed method respectively.The residual wavefront RMS of the traditional method is 0.146λ,and it is 0.037λfor the proposed method,which manifests an improvement of accuracy by an order of magnitude.At the same time,different levels of signal-to-noise ratios(SNRs)from 50 dB to 10 dB of the interferogram are simulated,and the RMS of the residual wavefront is from 0.040λto 0.066λ.In terms of experiments,an experimental verification device based on a phase-only spatial light modulator is built,and the known phase on the modulator is retrieved from the actual interferogram.The RMS of the residual wavefront retrieved through FFT is 0.112λ,and it decreases to 0.035λthrough CZT.The experimental results verify the effectiveness of the method proposed in this paper.Furthermore,the method can be used in other types of spatial carrier frequency interference,such as lateral shearing interference,rotational shearing interference,flipping shearing interference,and four-wave shearing interference.
文摘The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration capability and poor versatile of phase detection, the complexity of phase retrieval algorithm, we propose a new phase measurement principle and experimental methods of liquid crystal optical device. It is a phase measurement method based on the combination of phase- shifting interferometer and phase conjugation technology. The deflection characteristics of the liquid crystal device means the device can implement phase modulation to only one direction of polarized light while is completely transparent to orthogonal polarized light. We put forward the phase shift of the orthogonal polarization phase shift interferometer method, using phase shifting interference as well as the combination of phase conjugate means to achieve its phase measurement. So we can retrieves devices modulation phase simply and efficiently combines with phase- shifting interferometer technology.