We analyze the radial and vertical metallicity and [α/Fe] gradients of the disk stars of a disk galaxy simulated in a fully cosmological setting with the chemo- dynamical galaxy evolution code GCD+. We study how the...We analyze the radial and vertical metallicity and [α/Fe] gradients of the disk stars of a disk galaxy simulated in a fully cosmological setting with the chemo- dynamical galaxy evolution code GCD+. We study how the radial abundance gradients vary as a function of height above the plane and find that the metallicity ([α/Fe]) gra- dient becomes more positive (negative) with increasing height, changing sign around 1.5 kpc above the plane. At the largest vertical height (2 〈 丨z丨 〈 3 kpc), our simulated galaxy shows a positive radial metallicity gradient. We find that the positive metallicity gradient is caused by the age-metallicity and age-velocity dispersion relation, where younger stars have higher metallicity and lower velocity dispersion. Due to the age- velocity dispersion relation, a greater fraction of younger stars reaches 丨z丨 〉 2 kpc at the outer region, because of the lower gravitational restoring force of the disk, i.e. flaring. As a result, the fraction of younger stars with higher metallicity due to the age-metallicity relation becomes higher at the outer radii, which makes the median metallicity higher at the outer radii. Combining this result with the recently observed age-metallicity and age-velocity dispersion relation for the Milky Way thick disk stars suggested by Haywood et al., we argue that the observed (small) positive radial metal- licity gradient at large heights of the Milky Way disk stars can be explained by flaring of the younger thick and/or thin disk stars.展开更多
基金Supported by the National Natural Science Foundation of China
文摘We analyze the radial and vertical metallicity and [α/Fe] gradients of the disk stars of a disk galaxy simulated in a fully cosmological setting with the chemo- dynamical galaxy evolution code GCD+. We study how the radial abundance gradients vary as a function of height above the plane and find that the metallicity ([α/Fe]) gra- dient becomes more positive (negative) with increasing height, changing sign around 1.5 kpc above the plane. At the largest vertical height (2 〈 丨z丨 〈 3 kpc), our simulated galaxy shows a positive radial metallicity gradient. We find that the positive metallicity gradient is caused by the age-metallicity and age-velocity dispersion relation, where younger stars have higher metallicity and lower velocity dispersion. Due to the age- velocity dispersion relation, a greater fraction of younger stars reaches 丨z丨 〉 2 kpc at the outer region, because of the lower gravitational restoring force of the disk, i.e. flaring. As a result, the fraction of younger stars with higher metallicity due to the age-metallicity relation becomes higher at the outer radii, which makes the median metallicity higher at the outer radii. Combining this result with the recently observed age-metallicity and age-velocity dispersion relation for the Milky Way thick disk stars suggested by Haywood et al., we argue that the observed (small) positive radial metal- licity gradient at large heights of the Milky Way disk stars can be explained by flaring of the younger thick and/or thin disk stars.