In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequal...In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.展开更多
In this paper we investigate an integration by parts formula for Lévy processes by using lower bound conditions of the corresponding Lévy measure. As applications, derivative formula and coupling property ar...In this paper we investigate an integration by parts formula for Lévy processes by using lower bound conditions of the corresponding Lévy measure. As applications, derivative formula and coupling property are derived for transition semigroups of linear SDEs driven by Lévy processes.展开更多
基金supported by the Natural Science Foundation of China(11901005,12071003)the Natural Science Foundation of Anhui Province(2008085QA20)。
文摘In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.
基金Supported by the National Natural Science Foundation of China(10971180),(11271169)A Project Funded by the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions
文摘In this paper we investigate an integration by parts formula for Lévy processes by using lower bound conditions of the corresponding Lévy measure. As applications, derivative formula and coupling property are derived for transition semigroups of linear SDEs driven by Lévy processes.