期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
用Newmark法求解旋转细长梁的影响因素分析 被引量:3
1
作者 罗敏 刘巨保 《大庆石油学院学报》 CAS 北大核心 2003年第1期66-69,共4页
采用Newmark法求解旋转细长梁问题 ,分析了时间步长、积分常数和直径与杆长比 3个因素的影响 .算例表明 :计算时间步长选择 2~ 10 (°)较为合理 ,能够在保证计算精度的同时 ,提高计算效率 ;积分常数选取值愈大 ,转矩振幅衰减愈快 ... 采用Newmark法求解旋转细长梁问题 ,分析了时间步长、积分常数和直径与杆长比 3个因素的影响 .算例表明 :计算时间步长选择 2~ 10 (°)较为合理 ,能够在保证计算精度的同时 ,提高计算效率 ;积分常数选取值愈大 ,转矩振幅衰减愈快 ,当积分常数取 3 .5 0时 ,旋转杆件能够在 2个周期内趋于稳定 ;直径与杆长之比大于 1∶10 4 时 ,杆件的上、下两端角位移出现明显差异 ,表现出细长杆的旋转特性 .这 3个因素的影响规律与理论分析结论相一致 ,为工程应用提供了计算依据 . 展开更多
关键词 NEWMARK法 求解 旋转细长梁 影响因素 瞬态动力学 时间步长 积分常数 石油钻采 钻柱 抽油杆柱
下载PDF
Revisiting the Curie-Von Schweidler Law for Dielectric Relaxation and Derivation of Distribution Function for Relaxation Rates as Zipf’s Power Law and Manifestation of Fractional Differential Equation for Capacitor 被引量:1
2
作者 Shantanu Das 《Journal of Modern Physics》 2017年第12期1988-2012,共25页
The classical power law relaxation, i.e. relaxation of current with inverse of power of time for a step-voltage excitation to dielectric—as popularly known as Curie-von Schweidler law is empirically derived and is ob... The classical power law relaxation, i.e. relaxation of current with inverse of power of time for a step-voltage excitation to dielectric—as popularly known as Curie-von Schweidler law is empirically derived and is observed in several relaxation experiments on various dielectrics studies since late 19th Century. This relaxation law is also regarded as “universal-law” for dielectric relaxations;and is also termed as power law. This empirical Curie-von Schewidler relaxation law is then used to derive fractional differential equations describing constituent expression for capacitor. In this paper, we give simple mathematical treatment to derive the distribution of relaxation rates of this Curie-von Schweidler law, and show that the relaxation rate follows Zipf’s power law distribution. We also show the method developed here give Zipfian power law distribution for relaxing time constants. Then we will show however mathematically correct this may be, but physical interpretation from the obtained time constants distribution are contradictory to the Zipfian rate relaxation distribution. In this paper, we develop possible explanation that as to why Zipfian distribution of relaxation rates appears for Curie-von Schweidler Law, and relate this law to time variant rate of relaxation. In this paper, we derive appearance of fractional derivative while using Zipfian power law distribution that gives notion of scale dependent relaxation rate function for Curie-von Schweidler relaxation phenomena. This paper gives analytical approach to get insight of a non-Debye relaxation and gives a new treatment to especially much used empirical Curie-von Schweidler (universal) relaxation law. 展开更多
关键词 Power LAW RELAXATION RATE Distribution FRACTIONAL Derivative FRACTIONAL integration Curie-Von Schweidler LAW Time-constants Laplace INTEGRAL Zipf’s LAW INTEGRAL Representation Time Dependent RELAXATION RATE Scale Dependent RELAXATION RATE Non-Debye RELAXATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部