在分析硅衬底上射频螺旋电感物理模型的基础上,从几何参数、工艺参数及电感组成形式考虑,用模拟软件ASITIC(Analysis and Simulation of Spiral Inductors and Transformers for ICs)对影响电感值和 Q值及谐振频率的各参数进行全面详尽...在分析硅衬底上射频螺旋电感物理模型的基础上,从几何参数、工艺参数及电感组成形式考虑,用模拟软件ASITIC(Analysis and Simulation of Spiral Inductors and Transformers for ICs)对影响电感值和 Q值及谐振频率的各参数进行全面详尽的模拟,得出了几条实用的设计原则且用此模拟方法与所得结论均可有效地指导射频集成电路中集成电感的设计。展开更多
Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(...Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, u展开更多
文摘在分析硅衬底上射频螺旋电感物理模型的基础上,从几何参数、工艺参数及电感组成形式考虑,用模拟软件ASITIC(Analysis and Simulation of Spiral Inductors and Transformers for ICs)对影响电感值和 Q值及谐振频率的各参数进行全面详尽的模拟,得出了几条实用的设计原则且用此模拟方法与所得结论均可有效地指导射频集成电路中集成电感的设计。
基金Under the auspices of National Natural Science Foundation of China (No. 52268008, 51768001)。
文摘Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, u