Unlimited and seamless coverage as well as ultra-reliable and low-latency communications are vital for connected vehicles,in particular for new use cases like autonomous driving and vehicle platooning.In this paper,we...Unlimited and seamless coverage as well as ultra-reliable and low-latency communications are vital for connected vehicles,in particular for new use cases like autonomous driving and vehicle platooning.In this paper,we propose a novel Space-Air-Ground integrated vehicular network(SAGiven)architecture to gracefully integrate the multi-dimensional and multi-scale context-information and network resources from satellites,High-Altitude Platform stations(HAPs),low-altitude Unmanned Aerial Vehicles(UAVs),and terrestrial cellular communication systems.One of the key features of the SAGiven is the reconfigurability of heterogeneous network functions as well as network resources.We first give a comprehensive review of the key challenges of this new architecture and then provide some up-to-date solutions on those challenges.Specifically,the solutions will cover the following topics:(1)space-air-ground integrated network reconfiguration under dynamic space resources constraints;(2)multi-dimensional sensing and efficient integration of multi-dimensional context information;(3)real-time,reliable,and secure communications among vehicles and between vehicles and the SAGiven platform;and(4)a holistic integration and demonstration of the SAGiven.Finally,it is concluded that the SAGiven can play a key role in future autonomous driving and Internet-of-Vehicles applications.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.91638204).
文摘Unlimited and seamless coverage as well as ultra-reliable and low-latency communications are vital for connected vehicles,in particular for new use cases like autonomous driving and vehicle platooning.In this paper,we propose a novel Space-Air-Ground integrated vehicular network(SAGiven)architecture to gracefully integrate the multi-dimensional and multi-scale context-information and network resources from satellites,High-Altitude Platform stations(HAPs),low-altitude Unmanned Aerial Vehicles(UAVs),and terrestrial cellular communication systems.One of the key features of the SAGiven is the reconfigurability of heterogeneous network functions as well as network resources.We first give a comprehensive review of the key challenges of this new architecture and then provide some up-to-date solutions on those challenges.Specifically,the solutions will cover the following topics:(1)space-air-ground integrated network reconfiguration under dynamic space resources constraints;(2)multi-dimensional sensing and efficient integration of multi-dimensional context information;(3)real-time,reliable,and secure communications among vehicles and between vehicles and the SAGiven platform;and(4)a holistic integration and demonstration of the SAGiven.Finally,it is concluded that the SAGiven can play a key role in future autonomous driving and Internet-of-Vehicles applications.