An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques ha...An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison.展开更多
In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide ...In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide higher compression ratio than Huffman coding while it reconstructs image without loss compared with the first generation wavelet transform. The experimental results show that the se cond generation wavelet transform can obtain excellent performance in medical image compression coding.展开更多
A new meaningful image encryption algorithm based on compressive sensing(CS)and integer wavelet transformation(IWT)is proposed in this study.First of all,the initial values of chaotic system are encrypted by RSA algor...A new meaningful image encryption algorithm based on compressive sensing(CS)and integer wavelet transformation(IWT)is proposed in this study.First of all,the initial values of chaotic system are encrypted by RSA algorithm,and then they are open as public keys.To make the chaotic sequence more random,a mathematical model is constructed to improve the random performance.Then,the plain image is compressed and encrypted to obtain the secret image.Secondly,the secret image is inserted with numbers zero to extend its size same to the plain image.After applying IWT to the carrier image and discrete wavelet transformation(DWT)to the inserted image,the secret image is embedded into the carrier image.Finally,a meaningful carrier image embedded with secret plain image can be obtained by inverse IWT.Here,the measurement matrix is built by both chaotic system and Hadamard matrix,which not only retains the characteristics of Hadamard matrix,but also has the property of control and synchronization of chaotic system.Especially,information entropy of the plain image is employed to produce the initial conditions of chaotic system.As a result,the proposed algorithm can resist known-plaintext attack(KPA)and chosen-plaintext attack(CPA).By the help of asymmetric cipher algorithm RSA,no extra transmission is needed in the communication.Experimental simulations show that the normalized correlation(NC)values between the host image and the cipher image are high.That is to say,the proposed encryption algorithm is imperceptible and has good hiding effect.展开更多
The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot ...The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention.Fortunately,digital watermarking provides an effective method to solve this problem.In order to improve the robustness of the medical image watermarking scheme,in this paper,we propose a novel zero-watermarking algorithm with the integer wavelet transform(IWT),Schur decomposition and image block energy.Specifically,we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,then we decompose the sub-blocks by Schur decomposition.After that,the feature matrix is constructed according to the relationship between the image block energy and the whole image energy.At the same time,we encrypt watermarking with the logistic chaotic position scrambling.Finally,the zero-watermarking is obtained by XOR operation with the encrypted watermarking.Three indexes of peak signal-to-noise ratio,normalization coefficient(NC)and the bit error rate(BER)are used to evaluate the robustness of the algorithm.According to the experimental results,most of the NC values are around 0.9 under various attacks,while the BER values are very close to 0.These experimental results show that the proposed algorithm is more robust than the existing zero-watermarking methods,which indicates it is more suitable for medical image privacy and security protection.展开更多
A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of ...A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of integer wavelet transform coefficients and the characteristics of Rice entropy coder, the divide and rule method is used for high-frequency sub-bands and low-frequency one. High-frequency sub-bands are coded by the Rice entropy coder, and low-frequency coefficients are predicted before coding. The role of predictor is to map the low-frequency coefficients into symbols suitable for the entropy coding. Experimental results show that the average Comprcssion Ratio (CR) of our approach is about two, which is close to that of JPEG 2000. The algorithm is simple and easy to be implemented in hardware. Moreover, it has the merits of adaptability, and independent data packet. So the algorithm can adapt to space lossless compression applications.展开更多
Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recurs...Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recursive embedding method to increase capacity substantially using the Integer wavelet transform and the Arnold transform.The notion of Integer wavelet transforms is to ensure that all coefficients of the cover images are used during embedding with an increase in payload.By scrambling the cover image,Arnold transform adds security to the information that gets embedded and also allows embedding more information in each iteration.The hybrid combination of Integer wavelet transform and Arnold transform results to build a more efficient and secure system.The proposed method employs a set of keys to ensure that information cannot be decoded by an attacker.The experimental results show that it aids in the development of a more secure storage system and withstand few tampering attacks The suggested technique is tested on many image formats,including medical images.Various performance metrics proves that the retrieved cover image and hidden image are both intact.This System is proven to withstand rotation attack as well.展开更多
文摘An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison.
基金Supported by the National Natural Science Foundation of China!( 6 9875 0 0 9)
文摘In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide higher compression ratio than Huffman coding while it reconstructs image without loss compared with the first generation wavelet transform. The experimental results show that the se cond generation wavelet transform can obtain excellent performance in medical image compression coding.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.61972103,61772371,62172301)the Natural Science Foundation of Guangdong Province of China(2019A1515011361)+2 种基金the Fundamental Research Funds for the Central Universities of China(22120210545)the Key Scientific Research Project of Education Department of Guangdong Province of China(2020ZDZX3064)the Postgraduate Education Innovation Project of Guangdong Ocean University of China(202143).
文摘A new meaningful image encryption algorithm based on compressive sensing(CS)and integer wavelet transformation(IWT)is proposed in this study.First of all,the initial values of chaotic system are encrypted by RSA algorithm,and then they are open as public keys.To make the chaotic sequence more random,a mathematical model is constructed to improve the random performance.Then,the plain image is compressed and encrypted to obtain the secret image.Secondly,the secret image is inserted with numbers zero to extend its size same to the plain image.After applying IWT to the carrier image and discrete wavelet transformation(DWT)to the inserted image,the secret image is embedded into the carrier image.Finally,a meaningful carrier image embedded with secret plain image can be obtained by inverse IWT.Here,the measurement matrix is built by both chaotic system and Hadamard matrix,which not only retains the characteristics of Hadamard matrix,but also has the property of control and synchronization of chaotic system.Especially,information entropy of the plain image is employed to produce the initial conditions of chaotic system.As a result,the proposed algorithm can resist known-plaintext attack(KPA)and chosen-plaintext attack(CPA).By the help of asymmetric cipher algorithm RSA,no extra transmission is needed in the communication.Experimental simulations show that the normalized correlation(NC)values between the host image and the cipher image are high.That is to say,the proposed encryption algorithm is imperceptible and has good hiding effect.
基金supported in part by the Hainan Provincial Natural Science Foundation of China (No.620MS067)the Intelligent Medical Project of Chongqing Medical University (ZHYXQNRC202101)the Student Scientific Research and Innovation Experiment Project of the Medical Information College of Chongqing Medical University (No.2020C006).
文摘The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention.Fortunately,digital watermarking provides an effective method to solve this problem.In order to improve the robustness of the medical image watermarking scheme,in this paper,we propose a novel zero-watermarking algorithm with the integer wavelet transform(IWT),Schur decomposition and image block energy.Specifically,we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,then we decompose the sub-blocks by Schur decomposition.After that,the feature matrix is constructed according to the relationship between the image block energy and the whole image energy.At the same time,we encrypt watermarking with the logistic chaotic position scrambling.Finally,the zero-watermarking is obtained by XOR operation with the encrypted watermarking.Three indexes of peak signal-to-noise ratio,normalization coefficient(NC)and the bit error rate(BER)are used to evaluate the robustness of the algorithm.According to the experimental results,most of the NC values are around 0.9 under various attacks,while the BER values are very close to 0.These experimental results show that the proposed algorithm is more robust than the existing zero-watermarking methods,which indicates it is more suitable for medical image privacy and security protection.
文摘A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of integer wavelet transform coefficients and the characteristics of Rice entropy coder, the divide and rule method is used for high-frequency sub-bands and low-frequency one. High-frequency sub-bands are coded by the Rice entropy coder, and low-frequency coefficients are predicted before coding. The role of predictor is to map the low-frequency coefficients into symbols suitable for the entropy coding. Experimental results show that the average Comprcssion Ratio (CR) of our approach is about two, which is close to that of JPEG 2000. The algorithm is simple and easy to be implemented in hardware. Moreover, it has the merits of adaptability, and independent data packet. So the algorithm can adapt to space lossless compression applications.
文摘Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recursive embedding method to increase capacity substantially using the Integer wavelet transform and the Arnold transform.The notion of Integer wavelet transforms is to ensure that all coefficients of the cover images are used during embedding with an increase in payload.By scrambling the cover image,Arnold transform adds security to the information that gets embedded and also allows embedding more information in each iteration.The hybrid combination of Integer wavelet transform and Arnold transform results to build a more efficient and secure system.The proposed method employs a set of keys to ensure that information cannot be decoded by an attacker.The experimental results show that it aids in the development of a more secure storage system and withstand few tampering attacks The suggested technique is tested on many image formats,including medical images.Various performance metrics proves that the retrieved cover image and hidden image are both intact.This System is proven to withstand rotation attack as well.