This paper introduced a way of fractal to solve the problem of taking count of the integer partitions, furthermore, using the method in this paper some recurrence equations concerning the integer partitions can be ded...This paper introduced a way of fractal to solve the problem of taking count of the integer partitions, furthermore, using the method in this paper some recurrence equations concerning the integer partitions can be deduced, including the pentagonal number theorem.展开更多
The conformable fractional derivative method has been utilized in order to examine the logistic model with constant harvesting.Such method introduces a generalization to the classical analysis of Logistic model,and he...The conformable fractional derivative method has been utilized in order to examine the logistic model with constant harvesting.Such method introduces a generalization to the classical analysis of Logistic model,and hence the features of the Logistic model,such as subcritical and supercritical harvesting,have been investigated in a view of fractional calculus.The positive auxiliary parameter,σ,with dimension of time is implemented to maintain the dimensionality of the system.The significant information of such parameter to the population has been discussed.The population expressions,obtained by conformable description,are compared with the expressions of the classical derivative.This comparison shows that the non-integer expressions are in a parallel line with that of the classical one.展开更多
A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primit...A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.展开更多
This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An...This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An overview of both conjectures and their respective iterative processes will be presented. Showcasing their unique properties and behavior to each other. Through a detailed comparison, we highlight the similarities and differences between these two conjectures and discuss their significance in the field of mathematics. And how they prove each other to be true.展开更多
This article deals with the Riemann-Hilbert boundary value problem for quasilinear mixed (elliptic- hyperbolic) complex equations of first order with degenerate rank 0. Firstly, we give the representation theorem an...This article deals with the Riemann-Hilbert boundary value problem for quasilinear mixed (elliptic- hyperbolic) complex equations of first order with degenerate rank 0. Firstly, we give the representation theorem and prove the uniqueness of solutions for the boundary value problem. Afterwards, by using the method of successive iteration, the existence and estimates of solutions for the boundary value problem are verified. The above problem possesses the important applications to the Tricomi problem of mixed type equations of second order. In this article, the proof of HSlder continuity of a singular double integer is very difficult and interesting as in this Section 4 below.展开更多
This paper is a logical continuation of my recently-published paper. Security of modern communication based on RSA cryptographic protocols and their analogues is as crypto-immune as integer factorization (iFac) is dif...This paper is a logical continuation of my recently-published paper. Security of modern communication based on RSA cryptographic protocols and their analogues is as crypto-immune as integer factorization (iFac) is difficult. In this paper are considered enhanced algorithms for the iFac that are faster than the algorithm proposed in the previous paper. Among these enhanced algorithms is the one that is based on the ability to count the number of integer solutions on quadratic and bi-quadratic modular equations. Therefore, the iFac complexity is at most as difficult as the problem of counting. Properties of various modular equations are provided and confirmed in numerous computer experiments. These properties are instrumental in the proposed factorization algorithms, which are numerically illustrated in several examples.展开更多
Polynomial functions containing terms with non-integer powers are studied to disclose possible approaches for obtaining their roots as well as employing them for curve-fitting purposes. Several special cases represent...Polynomial functions containing terms with non-integer powers are studied to disclose possible approaches for obtaining their roots as well as employing them for curve-fitting purposes. Several special cases representing equations from different categories are investigated for their roots. Curve-fitting applications to physically meaningful data by the use of fractional functions are worked out in detail. Relevance of this rarely worked subject to solutions of fractional differential equations is pointed out and existing potential in related future work is emphasized.展开更多
In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time sca...In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time scales is presented. Discrete fractional Birkhoff equations with left and right discrete operators of Riemann-Liouville type are established and some special cases including classical discrete Birkhoff equations,discrete fractional Hamilton equations and discrete fractional Lagrange equations are discussed. Finally,an example is devoted to illustrate the results.展开更多
文摘This paper introduced a way of fractal to solve the problem of taking count of the integer partitions, furthermore, using the method in this paper some recurrence equations concerning the integer partitions can be deduced, including the pentagonal number theorem.
文摘The conformable fractional derivative method has been utilized in order to examine the logistic model with constant harvesting.Such method introduces a generalization to the classical analysis of Logistic model,and hence the features of the Logistic model,such as subcritical and supercritical harvesting,have been investigated in a view of fractional calculus.The positive auxiliary parameter,σ,with dimension of time is implemented to maintain the dimensionality of the system.The significant information of such parameter to the population has been discussed.The population expressions,obtained by conformable description,are compared with the expressions of the classical derivative.This comparison shows that the non-integer expressions are in a parallel line with that of the classical one.
文摘A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.
文摘This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An overview of both conjectures and their respective iterative processes will be presented. Showcasing their unique properties and behavior to each other. Through a detailed comparison, we highlight the similarities and differences between these two conjectures and discuss their significance in the field of mathematics. And how they prove each other to be true.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11021161 and 10928102973 Program of China under Grant No.2011CB80800+2 种基金Chinese Academy of Sciences under Grant No.kjcx-yw-s7project grant of "Center for Research and Applications in Plasma Physics and Pulsed Power Technology,PBCT-Chile-ACT 26"Direcci'on de Programas de Investigaci'on,Universidad de Talca,Chile
文摘This article deals with the Riemann-Hilbert boundary value problem for quasilinear mixed (elliptic- hyperbolic) complex equations of first order with degenerate rank 0. Firstly, we give the representation theorem and prove the uniqueness of solutions for the boundary value problem. Afterwards, by using the method of successive iteration, the existence and estimates of solutions for the boundary value problem are verified. The above problem possesses the important applications to the Tricomi problem of mixed type equations of second order. In this article, the proof of HSlder continuity of a singular double integer is very difficult and interesting as in this Section 4 below.
文摘This paper is a logical continuation of my recently-published paper. Security of modern communication based on RSA cryptographic protocols and their analogues is as crypto-immune as integer factorization (iFac) is difficult. In this paper are considered enhanced algorithms for the iFac that are faster than the algorithm proposed in the previous paper. Among these enhanced algorithms is the one that is based on the ability to count the number of integer solutions on quadratic and bi-quadratic modular equations. Therefore, the iFac complexity is at most as difficult as the problem of counting. Properties of various modular equations are provided and confirmed in numerous computer experiments. These properties are instrumental in the proposed factorization algorithms, which are numerically illustrated in several examples.
文摘Polynomial functions containing terms with non-integer powers are studied to disclose possible approaches for obtaining their roots as well as employing them for curve-fitting purposes. Several special cases representing equations from different categories are investigated for their roots. Curve-fitting applications to physically meaningful data by the use of fractional functions are worked out in detail. Relevance of this rarely worked subject to solutions of fractional differential equations is pointed out and existing potential in related future work is emphasized.
基金National Natural Science Foundations of China(Nos.11272227,11572212)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(No.KYLX15_0405)
文摘In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time scales is presented. Discrete fractional Birkhoff equations with left and right discrete operators of Riemann-Liouville type are established and some special cases including classical discrete Birkhoff equations,discrete fractional Hamilton equations and discrete fractional Lagrange equations are discussed. Finally,an example is devoted to illustrate the results.