For a vertical insulating wall,a product function of heat flow and strength with power weight is introduced as the complex optimization objective to compromise between insulating performance and mechanical performance...For a vertical insulating wall,a product function of heat flow and strength with power weight is introduced as the complex optimization objective to compromise between insulating performance and mechanical performance.Under the global constraints of fixed external dimensions and safety requirements,the constructal optimization of the wall is carried out by taking the complex function maximization as the objective.It is shown that the maximum of the complex-objective function and its corresponding optimal internal structure design under a certain environmental condition can be obtained by allowing the internal structure of the wall to vary(evolve)freely.The validity,effectivity and applicability of the complex function are proved by the results and the power weight parameter in the range from 0.4 to 4 can compromise between the requirements of insulating and strength simultaneously and preferably.The constructal optimization with coequal attention to heat flow and strength and the corresponding results are discussed in detail.The optimal structure design and the corresponding performance analyses under various environmental conditions of application are presented.When the change of environment is greater and the total Rayleigh number is bigger,the insulating wall with large number of cavities should be employed.When the total Rayleigh number is small,the better performance can be obtained by reasonably employing the insulating wall with small number of cavities.The complex function has better selfadaptability,and the results in the recent literature are special cases of this paper.展开更多
Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity a...Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10905093)the Program for New Century Excellent Talents in University of China(Grant No.NCET-04-1006)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.200136)
文摘For a vertical insulating wall,a product function of heat flow and strength with power weight is introduced as the complex optimization objective to compromise between insulating performance and mechanical performance.Under the global constraints of fixed external dimensions and safety requirements,the constructal optimization of the wall is carried out by taking the complex function maximization as the objective.It is shown that the maximum of the complex-objective function and its corresponding optimal internal structure design under a certain environmental condition can be obtained by allowing the internal structure of the wall to vary(evolve)freely.The validity,effectivity and applicability of the complex function are proved by the results and the power weight parameter in the range from 0.4 to 4 can compromise between the requirements of insulating and strength simultaneously and preferably.The constructal optimization with coequal attention to heat flow and strength and the corresponding results are discussed in detail.The optimal structure design and the corresponding performance analyses under various environmental conditions of application are presented.When the change of environment is greater and the total Rayleigh number is bigger,the insulating wall with large number of cavities should be employed.When the total Rayleigh number is small,the better performance can be obtained by reasonably employing the insulating wall with small number of cavities.The complex function has better selfadaptability,and the results in the recent literature are special cases of this paper.
基金supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating.