<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as r...<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as reinforcement. The hybrid metal matrix composites</span><span style="font-family:Verdana;"> (Hmmcs) have been used to manufacture drive shafts, disc brake rotors, brake drums, connecting rods pistons, engine block cylinder liners for automotive and rail vehicle applications. The Hmmcs castings of diameter 120 mm and length 300 mm were prepared through sand mould technique following stir casting methodology. The cast components further subjected to evaluation of physical properties and machining tests using two grades of coated inserts and PCD inserts. The experiments were carried out following ISO 3685 standards. The coating thickness of the TiN coated and TiAlN coated inserts were measured using Kalo testing method</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the results of the test show that the interface of the substrate and coating was free from the porosity, and the coating thickness of TiN coating was 4.84 microns and TiAlN coating was measured 4.6 microns. The results of the experiments show that performance of the PCD insert was better than coated inserts at 0.1 mm/rev feed</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> however at 0.2 mm/revolution feed PCD insert failed by micro chipping of cutting edge while machining Hmmcs. When TiAlN coated inserts were us展开更多
The performances of ceramic inserts in cutting nickel-based alloy were investigated. A new cutting test-bed was devised and used to deburr. The burr height on the working surface with notch wear in deburring cutting w...The performances of ceramic inserts in cutting nickel-based alloy were investigated. A new cutting test-bed was devised and used to deburr. The burr height on the working surface with notch wear in deburring cutting was compared with that in normal cutting. The impact force, impact pressure, and impact frequency of the saw-tooth-shaped chip edge on rake face and cutting edge at different speeds were calculated, and the influence of chip edge on notch wear formation was analyzed. A new tool design for reducing notch wear was presented, which is flexible and can deburr effectively.展开更多
Application of titanium alloy has increased many fields since the past 50 years. The major drawback encountered during machining was difficult to cut and the formation of BUE (Built up Edge). This paper presents the t...Application of titanium alloy has increased many fields since the past 50 years. The major drawback encountered during machining was difficult to cut and the formation of BUE (Built up Edge). This paper presents the tool wear study of TTI 15 ceramic insert (80% Aluminum oxide and 20 % Titanium carbide) on machining Ti-6Al-4V at moderate speed with and without the application of water soluble servo cut S coolant. Titanium alloy is highly refractory metal and machining titanium is challenging to the manufacturers. Experiments were carried out on medium duty lathe. Application of coolant tends to reduce toolwear and minimize adhesion of the work material on the cutting tool during machining and also improves the surface finish. Result provides some useful information.展开更多
采用Al Ti N涂层硬质合金刀具对1Cr11Ni2W2MoV以及2Cr13两种型号的不锈钢进行车削试验,利用激光共聚焦显微镜观察刀具的前、后刀面磨损形貌,对刀具的主要磨损机理及磨损形式进行分析。研究结果表明:1Cr11Ni2W2MoV的加工难度大于2Cr13;...采用Al Ti N涂层硬质合金刀具对1Cr11Ni2W2MoV以及2Cr13两种型号的不锈钢进行车削试验,利用激光共聚焦显微镜观察刀具的前、后刀面磨损形貌,对刀具的主要磨损机理及磨损形式进行分析。研究结果表明:1Cr11Ni2W2MoV的加工难度大于2Cr13;硬质合金刀具切削1Cr11Ni2W2MoV不锈钢时,刀具主要的磨损形式为月牙洼磨损以及边界磨损,失效形式主要为崩刃;切削2Cr13不锈钢时,刀具的主要磨损机理为粘结磨损。展开更多
刀具磨损剧烈是钛合金切削中的突出问题,探求刀具磨损的本质对于提高加工质量和效率、降低成本具有重要意义。本文采用Al Ti N涂层硬质合金刀具对钛合金TA15(Ti-6.5Al-2Zr-1Mo-1V)进行车削试验,利用激光共聚焦显微镜观察刀具的磨损形貌...刀具磨损剧烈是钛合金切削中的突出问题,探求刀具磨损的本质对于提高加工质量和效率、降低成本具有重要意义。本文采用Al Ti N涂层硬质合金刀具对钛合金TA15(Ti-6.5Al-2Zr-1Mo-1V)进行车削试验,利用激光共聚焦显微镜观察刀具的磨损形貌,对刀具的主要磨损机理及磨损形式进行了分析,并根据刀具磨损状态进行了切削参数优选。研究结果表明:涂层硬质合金刀具切削TA15时,刀具失效形式主要为涂层剥落、崩刃和月牙洼磨损;随着切削速度的增加,后刀面VB值呈现了驼峰状的变化规律,涂层剥落的区域在波谷出现了明显的减小趋势;切削试验结果指出,正前角AlTiN涂层硬质合金刀具可用于钛合金TA15的精车工艺中,在v=100m/min、f=0.05mm/r、a_p=1.5mm切削参数下,刀具表现性能最优,同时硬质合金涂层刀具车削TA15的最大切削速度不宜超过120m/min。展开更多
The requirements of high quality machined surface as well as demand of enhanced contact time of cutting tools drive towards adopting multilayer coated carbide inserts. The industry requires higher productivity, hence ...The requirements of high quality machined surface as well as demand of enhanced contact time of cutting tools drive towards adopting multilayer coated carbide inserts. The industry requires higher productivity, hence higher machining parameters need to be used in order to meet the industry requirements. The alloy steel material used to fabricate machine parts consists of alloying elements like nickel, chromium and molybdenum difficult to machine, since the cutting tool fails by high tool wear, if we use uncoated carbide inserts to machine alloy steels. Hence in the present research work it is intended to use tungsten carbide inserts coated with different coatings for the experiments. The turning experiments were carried out using different grades of uncoated and coated carbide inserts of identical tool signature. The cutting speed selected for the experiments was 100 to 500 m/min in steps of 100 m/min, and the feed per revolution was 0.1 mm to 0.4 mm in step of 0.1 mm. The experimentation was carried out following ISO3685 standards. The results of the experiments revealed that the surface roughness measured was the least at cutting speed 500 m/min and feed per revolution of 0.1 mm, however the chip breaking found better when the feed used was greater than 0.2 mm/revolution.展开更多
C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short too...C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm^3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59μm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.展开更多
文摘<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as reinforcement. The hybrid metal matrix composites</span><span style="font-family:Verdana;"> (Hmmcs) have been used to manufacture drive shafts, disc brake rotors, brake drums, connecting rods pistons, engine block cylinder liners for automotive and rail vehicle applications. The Hmmcs castings of diameter 120 mm and length 300 mm were prepared through sand mould technique following stir casting methodology. The cast components further subjected to evaluation of physical properties and machining tests using two grades of coated inserts and PCD inserts. The experiments were carried out following ISO 3685 standards. The coating thickness of the TiN coated and TiAlN coated inserts were measured using Kalo testing method</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the results of the test show that the interface of the substrate and coating was free from the porosity, and the coating thickness of TiN coating was 4.84 microns and TiAlN coating was measured 4.6 microns. The results of the experiments show that performance of the PCD insert was better than coated inserts at 0.1 mm/rev feed</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> however at 0.2 mm/revolution feed PCD insert failed by micro chipping of cutting edge while machining Hmmcs. When TiAlN coated inserts were us
文摘The performances of ceramic inserts in cutting nickel-based alloy were investigated. A new cutting test-bed was devised and used to deburr. The burr height on the working surface with notch wear in deburring cutting was compared with that in normal cutting. The impact force, impact pressure, and impact frequency of the saw-tooth-shaped chip edge on rake face and cutting edge at different speeds were calculated, and the influence of chip edge on notch wear formation was analyzed. A new tool design for reducing notch wear was presented, which is flexible and can deburr effectively.
文摘Application of titanium alloy has increased many fields since the past 50 years. The major drawback encountered during machining was difficult to cut and the formation of BUE (Built up Edge). This paper presents the tool wear study of TTI 15 ceramic insert (80% Aluminum oxide and 20 % Titanium carbide) on machining Ti-6Al-4V at moderate speed with and without the application of water soluble servo cut S coolant. Titanium alloy is highly refractory metal and machining titanium is challenging to the manufacturers. Experiments were carried out on medium duty lathe. Application of coolant tends to reduce toolwear and minimize adhesion of the work material on the cutting tool during machining and also improves the surface finish. Result provides some useful information.
文摘采用Al Ti N涂层硬质合金刀具对1Cr11Ni2W2MoV以及2Cr13两种型号的不锈钢进行车削试验,利用激光共聚焦显微镜观察刀具的前、后刀面磨损形貌,对刀具的主要磨损机理及磨损形式进行分析。研究结果表明:1Cr11Ni2W2MoV的加工难度大于2Cr13;硬质合金刀具切削1Cr11Ni2W2MoV不锈钢时,刀具主要的磨损形式为月牙洼磨损以及边界磨损,失效形式主要为崩刃;切削2Cr13不锈钢时,刀具的主要磨损机理为粘结磨损。
文摘刀具磨损剧烈是钛合金切削中的突出问题,探求刀具磨损的本质对于提高加工质量和效率、降低成本具有重要意义。本文采用Al Ti N涂层硬质合金刀具对钛合金TA15(Ti-6.5Al-2Zr-1Mo-1V)进行车削试验,利用激光共聚焦显微镜观察刀具的磨损形貌,对刀具的主要磨损机理及磨损形式进行了分析,并根据刀具磨损状态进行了切削参数优选。研究结果表明:涂层硬质合金刀具切削TA15时,刀具失效形式主要为涂层剥落、崩刃和月牙洼磨损;随着切削速度的增加,后刀面VB值呈现了驼峰状的变化规律,涂层剥落的区域在波谷出现了明显的减小趋势;切削试验结果指出,正前角AlTiN涂层硬质合金刀具可用于钛合金TA15的精车工艺中,在v=100m/min、f=0.05mm/r、a_p=1.5mm切削参数下,刀具表现性能最优,同时硬质合金涂层刀具车削TA15的最大切削速度不宜超过120m/min。
文摘The requirements of high quality machined surface as well as demand of enhanced contact time of cutting tools drive towards adopting multilayer coated carbide inserts. The industry requires higher productivity, hence higher machining parameters need to be used in order to meet the industry requirements. The alloy steel material used to fabricate machine parts consists of alloying elements like nickel, chromium and molybdenum difficult to machine, since the cutting tool fails by high tool wear, if we use uncoated carbide inserts to machine alloy steels. Hence in the present research work it is intended to use tungsten carbide inserts coated with different coatings for the experiments. The turning experiments were carried out using different grades of uncoated and coated carbide inserts of identical tool signature. The cutting speed selected for the experiments was 100 to 500 m/min in steps of 100 m/min, and the feed per revolution was 0.1 mm to 0.4 mm in step of 0.1 mm. The experimentation was carried out following ISO3685 standards. The results of the experiments revealed that the surface roughness measured was the least at cutting speed 500 m/min and feed per revolution of 0.1 mm, however the chip breaking found better when the feed used was greater than 0.2 mm/revolution.
基金Supported by Program for New Century Excellent Talents in University of China(Grant No.NCET-13-0357)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2014EEM026)Tai Shan Scholar Foundation of China
文摘C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm^3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59μm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.