In this study, we assessed the burial fluxes and source appointment of different forms of carbon in core sediments collected from culture areas in the Sanggou Bay, and preliminarily analyzed the reasons for the greate...In this study, we assessed the burial fluxes and source appointment of different forms of carbon in core sediments collected from culture areas in the Sanggou Bay, and preliminarily analyzed the reasons for the greater proportion of inorganic carbon burial fluxes (BFTIc). The average content of total carbon (TC) in the Sanggou Bay was 2.14%. Total organic carbon (TOC) accounted for a small proportion in TC, more than 65% of which derived from terrigenous organic carbon (Ct), and while the proportion of marine-derived organic carbon (Ca) increased significantly since the beginning of large-scale aquaculture. Total inorganic carbon (TIC) accounted for 60%-75% of TC, an average of which was 60%, with a maximum up to 90% during flourishing periods (1880-1948) of small natural shellfish derived from seashells inorganic carbon (SheU-IC). The TC burial fluxes ranged from 31 g/(m2.a) to 895 g/(m2.a) with an average of 227 g/(m2.a), which was dominated by TIC (about 70%). Shell-IC was the main source of TIC and even TC. As the main food of natural shellfish, biogenic silica (BSi) negatively correlated with BFTIc through affecting shellfish breeding. BFTIc of Sta. S1, influenced greatly by the Yellow Sea Coastal Current, had a certain response to Pacific Decadal Oscillation (PDO) in some specific periods.展开更多
基金The National Basic Research Program(973 Program)of China under contract No.2010CB428902the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences under contract No.2014A01YY01the Management of Central Public-interest Scientific Institution Basal Research Fund under contract No.20603022013003
文摘In this study, we assessed the burial fluxes and source appointment of different forms of carbon in core sediments collected from culture areas in the Sanggou Bay, and preliminarily analyzed the reasons for the greater proportion of inorganic carbon burial fluxes (BFTIc). The average content of total carbon (TC) in the Sanggou Bay was 2.14%. Total organic carbon (TOC) accounted for a small proportion in TC, more than 65% of which derived from terrigenous organic carbon (Ct), and while the proportion of marine-derived organic carbon (Ca) increased significantly since the beginning of large-scale aquaculture. Total inorganic carbon (TIC) accounted for 60%-75% of TC, an average of which was 60%, with a maximum up to 90% during flourishing periods (1880-1948) of small natural shellfish derived from seashells inorganic carbon (SheU-IC). The TC burial fluxes ranged from 31 g/(m2.a) to 895 g/(m2.a) with an average of 227 g/(m2.a), which was dominated by TIC (about 70%). Shell-IC was the main source of TIC and even TC. As the main food of natural shellfish, biogenic silica (BSi) negatively correlated with BFTIc through affecting shellfish breeding. BFTIc of Sta. S1, influenced greatly by the Yellow Sea Coastal Current, had a certain response to Pacific Decadal Oscillation (PDO) in some specific periods.