The vegetation coverage dynamics and its relationship with climate factors on different spatial and temporal scales in Inner Mongolia during 2001-2010 were analyzed based on MODIS-NDVI data and climate data. The resul...The vegetation coverage dynamics and its relationship with climate factors on different spatial and temporal scales in Inner Mongolia during 2001-2010 were analyzed based on MODIS-NDVI data and climate data. The results indicated that vegetation coverage in Inner Mongolia showed obvious longitudinal zonality, increasing from west to east across the region with a change rate of 0.2/10N. During 2001-2010, the mean vegetation coverage was 0.57, 0.4 and 0.16 in forest, grassland and desert biome, respectively, exhibiting evident spatial heterogeneities. Totally, vegetation coverage had a slight increasing trend during the study period. Across Inner Mongolia, the area of which the vegetation coverage showed extremely significant and significant increase accounted for 11.25% and 29.13% of the area of whole region, respectively, while the area of which the vegetation coverage showed extremely significant and significant decrease accounted for 7.65% and 26.61%, respectively. On interannual time scale, precipitation was the dominant driving force of vegetation coverage for the whole region. On inter-monthly scale, the change of vegetation coverage was consistent with both the change of temperature and precipitation, implying that the vegetation growth within a year is more sensitive to the combined effects of water and heat rather than either single climate factor. The vegetation coverage in forest biome was mainly driven by temperature on both inter-annual and inter-monthly scales, while that in desert biome was mainly influenced by precipitation on both the two temporal scales. In grassland biome, the yearly vegetation coverage had a better correlation with precipitation, while the monthly vegetation coverage was influenced by both temperature and precipitation. In grassland bi- ome, the impacts of precipitation on monthly vegetation coverage showed time-delay effects.展开更多
Recent paleontological, paleomagnetic and carbon isotopic investigations have provided new evidence supporting placement of the Chinese terrestrial Paleocene-Eocene boundary at the base of the Lingcha Formation in the...Recent paleontological, paleomagnetic and carbon isotopic investigations have provided new evidence supporting placement of the Chinese terrestrial Paleocene-Eocene boundary at the base of the Lingcha Formation in the Hengyang Basin, Hunan Province, and within the upper part of the Nomogen Formation in the Erlian Basin, Inner Mongolia. Based on mammalian and ostracod biostratigraphic data, the boundary can also be roughly correlated with the contacts between the Baoyue and Huayong formations in the Sanshui Basin of Guangdong, the Qingjiang and Xinyu formations of Jiangxi, the Fourth Formation of the Funing Group and the Dainan Formation in northern Jiangsu, and the Dabu and Shisanjianfang formations in the Turfan Basin of Xinjiang.展开更多
基金The Key Project of National Basic Research Program of China,No.2010CB950702China's High-tech Special Projects,No.2007AA10Z231APN Project,No.ARCP2011-06CMY-Li
文摘The vegetation coverage dynamics and its relationship with climate factors on different spatial and temporal scales in Inner Mongolia during 2001-2010 were analyzed based on MODIS-NDVI data and climate data. The results indicated that vegetation coverage in Inner Mongolia showed obvious longitudinal zonality, increasing from west to east across the region with a change rate of 0.2/10N. During 2001-2010, the mean vegetation coverage was 0.57, 0.4 and 0.16 in forest, grassland and desert biome, respectively, exhibiting evident spatial heterogeneities. Totally, vegetation coverage had a slight increasing trend during the study period. Across Inner Mongolia, the area of which the vegetation coverage showed extremely significant and significant increase accounted for 11.25% and 29.13% of the area of whole region, respectively, while the area of which the vegetation coverage showed extremely significant and significant decrease accounted for 7.65% and 26.61%, respectively. On interannual time scale, precipitation was the dominant driving force of vegetation coverage for the whole region. On inter-monthly scale, the change of vegetation coverage was consistent with both the change of temperature and precipitation, implying that the vegetation growth within a year is more sensitive to the combined effects of water and heat rather than either single climate factor. The vegetation coverage in forest biome was mainly driven by temperature on both inter-annual and inter-monthly scales, while that in desert biome was mainly influenced by precipitation on both the two temporal scales. In grassland biome, the yearly vegetation coverage had a better correlation with precipitation, while the monthly vegetation coverage was influenced by both temperature and precipitation. In grassland bi- ome, the impacts of precipitation on monthly vegetation coverage showed time-delay effects.
基金supported by the Basic Work Program (2006FY120300-15)the Major Basic Research Projects (2006CB806400) of the Ministry of Science and Technology of Chinathe National Natural Science Foundation of China (40532010)
文摘Recent paleontological, paleomagnetic and carbon isotopic investigations have provided new evidence supporting placement of the Chinese terrestrial Paleocene-Eocene boundary at the base of the Lingcha Formation in the Hengyang Basin, Hunan Province, and within the upper part of the Nomogen Formation in the Erlian Basin, Inner Mongolia. Based on mammalian and ostracod biostratigraphic data, the boundary can also be roughly correlated with the contacts between the Baoyue and Huayong formations in the Sanshui Basin of Guangdong, the Qingjiang and Xinyu formations of Jiangxi, the Fourth Formation of the Funing Group and the Dainan Formation in northern Jiangsu, and the Dabu and Shisanjianfang formations in the Turfan Basin of Xinjiang.