It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortali...It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation-the transient period between the quiet standing posture and steady state walking-is a functional task that is classically used in the literature to investigate how the central nervous system(CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a prerequisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on:(1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and(2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward:(1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and(2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.展开更多
Conference control is a very important core part to compose a completeInternet multimedia conference system and has been a hot research area over the years, but there arecurrently no -widely accepted robust and scalab...Conference control is a very important core part to compose a completeInternet multimedia conference system and has been a hot research area over the years, but there arecurrently no -widely accepted robust and scalable solutions and standards. This paper proposes acomponent-based conference control model for loosely coupled sessions in which media applicationscan collaborate with a Session Controller (SC) to provide the conference control. A SC prototype hasbeen built.展开更多
文摘It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation-the transient period between the quiet standing posture and steady state walking-is a functional task that is classically used in the literature to investigate how the central nervous system(CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a prerequisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on:(1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and(2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward:(1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and(2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
文摘Conference control is a very important core part to compose a completeInternet multimedia conference system and has been a hot research area over the years, but there arecurrently no -widely accepted robust and scalable solutions and standards. This paper proposes acomponent-based conference control model for loosely coupled sessions in which media applicationscan collaborate with a Session Controller (SC) to provide the conference control. A SC prototype hasbeen built.