期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fast Iterative Closest Point-Simultaneous Localization and Mapping(ICP-SLAM)with Rough Alignment and Narrowing-Scale Nearby Searching 被引量:2
1
作者 梁滨 张金艺 唐笛恺 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期583-590,共8页
Two deficiencies in traditional iterative closest pointsimultaneous localization and mapping( ICP-SLAM) usually result in poor real-time performance. On one hand, relative position between current scan frame and globa... Two deficiencies in traditional iterative closest pointsimultaneous localization and mapping( ICP-SLAM) usually result in poor real-time performance. On one hand, relative position between current scan frame and global map cannot be previously known. As a result, ICP algorithm will take much amount of iterations to reach convergence. On the other hand,establishment of correspondence is done by global searching, which requires enormous computational time. To overcome the two problems,a fast ICP-SLAM with rough alignment and narrowing-scale nearby searching is proposed. As for the decrease of iterative times,rough alignment based on initial pose matrix is proposed. In detail,initial pose matrix is obtained by micro-electro-mechanical system( MEMS) magnetometer and global landmarks. Then rough alignment will be applied between current scan frame and global map at the beginning of ICP algorithm with initial pose matrix. As for accelerating the establishment of correspondence, narrowingscale nearby searching with dynamic threshold is proposed,where match-points are found within a progressively constrictive range.Compared to traditional ICP-SLAM,the experimental results show that the amount of iteration for ICP algorithm to reach convergence reduces to 92. 34% and ICP algorithm runtime reduces to 98. 86% on average. In addition,computational cost is kept in a stable level due to the eliminating of the accumulation of computational consumption. Moreover,great improvement can also been achieved in SLAM quality and robustness. 展开更多
关键词 rough alignment initial pose matrix nearby searching dynamic threshold real-time performance
下载PDF
粗匹配和局部尺度压缩搜索下的快速ICP-SLAM 被引量:1
2
作者 张金艺 梁滨 +2 位作者 唐笛恺 姚维强 鲍深 《智能系统学报》 CSCD 北大核心 2017年第3期413-421,共9页
ICP-SLAM在自主机器人和无人驾驶领域得到了极大的关注,但传统ICP-SLAM缺少当前帧和全局地图的相对位置关系,因此本文ICP算法必须经过大量的迭代之后才能达到收敛条件,这导致传统ICP-SLAM实时性很差。并且在每一次的迭代过程中,必须通... ICP-SLAM在自主机器人和无人驾驶领域得到了极大的关注,但传统ICP-SLAM缺少当前帧和全局地图的相对位置关系,因此本文ICP算法必须经过大量的迭代之后才能达到收敛条件,这导致传统ICP-SLAM实时性很差。并且在每一次的迭代过程中,必须通过全局搜索才能完成匹配点搜索,这进一步降低了传统ICP-SLAM的实时性。为此,提出了一种快速ICP-SLAM方案。首先,通过MEMS磁力计和全局地标计算出初始位姿矩阵,通过该初始位姿矩阵实现当前帧和全局地图之间粗匹配,进而减少达到收敛条件的迭代次数。其次,在每次迭代过程中,将采用局部尺度压缩搜索完成匹配点搜索,从而减小ICP-SLAM的计算开销,提高ICP-SLAM实时性;同时,每次迭代完成之后,还将通过动态阈值缩小搜索范围,达到加快匹配点搜索的速度,进而提高ICP-SLAM实时性。实验结果表明,和传统ICP-SLAM相比,在理想室内静止场景下,快速ICP-SLAM的迭代次数最高减小了92.34%,ICP算法运行时间最高降低了98.86%。除此之外,ICP-SLAM的整体负载也被保持在可控范围内,ICP-SLAM的整体性能得到很大的提升。 展开更多
关键词 ICP-SLAM 粗匹配 初始姿态矩阵 局部搜索 动态阈值 实时性 点云 迭代
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部