Ground state entanglement and thermal entanglement of a two-qubit Heisenberg XXZ chain in the presence of the different Dzyaloshinski-Moriya interaction and inhomogeneous magnetic field are investigated.By the concept...Ground state entanglement and thermal entanglement of a two-qubit Heisenberg XXZ chain in the presence of the different Dzyaloshinski-Moriya interaction and inhomogeneous magnetic field are investigated.By the concept of concurrence,we find that the inhomogeneity of the magnetic field may make entanglement last for a long time and the critical temperature is dependent on Jz and b.The entanglement can be increased by increasing the temperature in some cases.We also find that the x-component parameter Dx has a higher critical temperature and more entanglement for a certain condition than the z-component parameter Dz.展开更多
In this paper, we combined magnetostatics and laminar flow in microfluidics and studied a particle separation scheme employing magnetophoretic force in inhomogeneous magnetic field. A detailed model and analysis is sh...In this paper, we combined magnetostatics and laminar flow in microfluidics and studied a particle separation scheme employing magnetophoretic force in inhomogeneous magnetic field. A detailed model and analysis is shown and the proposed scheme is capable of efficiently separating magnetic particles with different permeability and sizes. The method shows a way to separate efficient particles and could potentially be implemented in biological and chemical systems.展开更多
Steady Magnetohydrodynamic (MHD) Equations of force, density and energy for quantum plasmas have been derived. These equations constitute our Steady Magnetohydrodynamic model for quantum plasmas. All the quantum effec...Steady Magnetohydrodynamic (MHD) Equations of force, density and energy for quantum plasmas have been derived. These equations constitute our Steady Magnetohydrodynamic model for quantum plasmas. All the quantum effects are contained in the last term of quantum force equation and in the last three terms of quantum Energy Equation, so-called Bohm potential and may be valuable for the description of quantum phenomena like tunneling.展开更多
The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show th...The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show that the impact of angular velocity in the former is equivalent to the impact of the magnetic field in the latter. We consider scenarios conducive to comparable trajectories for these two distinct areas of physics. We extend the analysis considering two separate routes. For the rotating frame we investigate the impact of friction and for the magnetic field the effect of field in-homogeneities. We utilize Mathematica [1] throughout, most notably for solving coupled partial differential equations.展开更多
基金Supported by Pre-Research Foundation of PLA University of Science and Technology (2009JC02)
文摘Ground state entanglement and thermal entanglement of a two-qubit Heisenberg XXZ chain in the presence of the different Dzyaloshinski-Moriya interaction and inhomogeneous magnetic field are investigated.By the concept of concurrence,we find that the inhomogeneity of the magnetic field may make entanglement last for a long time and the critical temperature is dependent on Jz and b.The entanglement can be increased by increasing the temperature in some cases.We also find that the x-component parameter Dx has a higher critical temperature and more entanglement for a certain condition than the z-component parameter Dz.
文摘In this paper, we combined magnetostatics and laminar flow in microfluidics and studied a particle separation scheme employing magnetophoretic force in inhomogeneous magnetic field. A detailed model and analysis is shown and the proposed scheme is capable of efficiently separating magnetic particles with different permeability and sizes. The method shows a way to separate efficient particles and could potentially be implemented in biological and chemical systems.
文摘Steady Magnetohydrodynamic (MHD) Equations of force, density and energy for quantum plasmas have been derived. These equations constitute our Steady Magnetohydrodynamic model for quantum plasmas. All the quantum effects are contained in the last term of quantum force equation and in the last three terms of quantum Energy Equation, so-called Bohm potential and may be valuable for the description of quantum phenomena like tunneling.
文摘The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show that the impact of angular velocity in the former is equivalent to the impact of the magnetic field in the latter. We consider scenarios conducive to comparable trajectories for these two distinct areas of physics. We extend the analysis considering two separate routes. For the rotating frame we investigate the impact of friction and for the magnetic field the effect of field in-homogeneities. We utilize Mathematica [1] throughout, most notably for solving coupled partial differential equations.