Traditionally, SQL query language is used to search the data in databases. However, it is inappropriate for end-users, since it is complex and hard to learn. It is the need of end-user, searching in databases with key...Traditionally, SQL query language is used to search the data in databases. However, it is inappropriate for end-users, since it is complex and hard to learn. It is the need of end-user, searching in databases with keywords, like in web search engines. This paper presents a survey of work on keyword search in databases. It also includes a brief introduction to the SEEKER system which has been developed.展开更多
We consider the problem of finding map regions that best match query keywords. This region search problem can be applied in many practical scenarios such as shopping recommendation, searching for tourist attractions, ...We consider the problem of finding map regions that best match query keywords. This region search problem can be applied in many practical scenarios such as shopping recommendation, searching for tourist attractions, and collision region detection for wireless sensor networks. While conventional map search retrieves isolate locations in a map, users frequently attempt to find regions of interest instead, e.g., detecting regions having too many wireless sensors to avoid collision, or finding shopping areas featuring various merchandise or tourist attractions of different styles. Finding regions of interest in a map is a non-trivial problem and retrieving regions of arbitrary shapes poses particular challenges. In this paper, we present a novel region search algorithm, dense region search(DRS), and its extensions, to find regions of interest by estimating the density of locations containing the query keywords in the region. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of our algorithm.展开更多
Cloud Computing and in particular cloud services have become widely used in both the technology and business industries. Despite this significant use, very little research or commercial solutions exist that focus on t...Cloud Computing and in particular cloud services have become widely used in both the technology and business industries. Despite this significant use, very little research or commercial solutions exist that focus on the discovery of cloud services. This paper introduces CSRecommender—a search engine and recommender system specifically designed for the discovery of these services. To engineer the system to scale, we also describe the implementation of a Cloud Service Identifier which enables the system to crawl the Internet without human involvement. Finally, we examine the effectiveness and usefulness of the system using real-world use cases and users.展开更多
文摘Traditionally, SQL query language is used to search the data in databases. However, it is inappropriate for end-users, since it is complex and hard to learn. It is the need of end-user, searching in databases with keywords, like in web search engines. This paper presents a survey of work on keyword search in databases. It also includes a brief introduction to the SEEKER system which has been developed.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZ13F020001)the National Natural Science Foundation of China(Nos.61173185 and 61173186)+1 种基金the National Key Technology R&D Program of China(No.2012BAI34B01)the Hangzhou S&T Development Plan(No.20150834M22)
文摘We consider the problem of finding map regions that best match query keywords. This region search problem can be applied in many practical scenarios such as shopping recommendation, searching for tourist attractions, and collision region detection for wireless sensor networks. While conventional map search retrieves isolate locations in a map, users frequently attempt to find regions of interest instead, e.g., detecting regions having too many wireless sensors to avoid collision, or finding shopping areas featuring various merchandise or tourist attractions of different styles. Finding regions of interest in a map is a non-trivial problem and retrieving regions of arbitrary shapes poses particular challenges. In this paper, we present a novel region search algorithm, dense region search(DRS), and its extensions, to find regions of interest by estimating the density of locations containing the query keywords in the region. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of our algorithm.
文摘Cloud Computing and in particular cloud services have become widely used in both the technology and business industries. Despite this significant use, very little research or commercial solutions exist that focus on the discovery of cloud services. This paper introduces CSRecommender—a search engine and recommender system specifically designed for the discovery of these services. To engineer the system to scale, we also describe the implementation of a Cloud Service Identifier which enables the system to crawl the Internet without human involvement. Finally, we examine the effectiveness and usefulness of the system using real-world use cases and users.