Web 2.0时代,建模和预测在线信息流行度是信息传播中的重要问题.本文基于社交网络系统信息传播的机制,通过假设和简化,提出了分支过程的概率模型,来描述在线社交网络信息的流行度动力学过程.对典型在线社交网络系统的信息流行度数据和...Web 2.0时代,建模和预测在线信息流行度是信息传播中的重要问题.本文基于社交网络系统信息传播的机制,通过假设和简化,提出了分支过程的概率模型,来描述在线社交网络信息的流行度动力学过程.对典型在线社交网络系统的信息流行度数据和网络结构数据进行了分析,统计结果表明信息流行度衰减遵循幂律分布(幂指数为1.8),微博网络的入度和出度分布也均服从幂律分布(幂指数为1.5).模型仿真结果发现,该模型能够再现真实社交网络数据的若干特征,且信息流行度与网络结构相关.对模型方程进行求解得到理论预测的结果与仿真分析和实际数据结果相符合.展开更多
With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel o...With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.展开更多
基金supported by the National Key Project of Scientific and Technical Supporting Programs of China(2014BAK15B01)
文摘With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.