The contrast function remains to be an open problem in blind source separation (BSS) when the number of source signals is unknown and/or dynamically changed. The paper studies this problem and proves that the mutual...The contrast function remains to be an open problem in blind source separation (BSS) when the number of source signals is unknown and/or dynamically changed. The paper studies this problem and proves that the mutual information is still the contrast function for BSS if the mixing matrix is of full column rank. The mutual information reaches its minimum at the separation points, where the random outputs of the BSS system are the scaled and permuted source signals, while the others are zero outputs. Using the property that the transpose of the mixing matrix and a matrix composed by m observed signals have the indentical null space with probability one, a practical method, which can detect the unknown number of source signals n, ulteriorly traces the dynamical change of the sources number with a few of data, is proposed. The effectiveness of the proposed theorey and the developed novel algorithm is verified by adaptive BSS simulations with unknown and dynamically changing number of source signals.展开更多
Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity an...Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity and intraclass variability of small objects,and UAV-specific nuisances such as uncontrolledweather conditions.Unlike previous approaches focusing on high-level semantic information,we report the importance of underlying features to improve detection accuracy and robustness fromthe information-theoretic perspective.Specifically,we propose a robust and discriminative feature learning approach through mutual information maximization(RD-MIM),which can be integrated into numerous object detection methods for aerial images.Firstly,we present the rank sample mining method to reduce underlying feature differences between the natural image domain and the aerial image domain.Then,we design a momentum contrast learning strategy to make object features similar to the same category and dissimilar to different categories.Finally,we construct a transformer-based global attention mechanism to boost object location semantics by leveraging the high interrelation of different receptive fields.We conduct extensive experiments on the VisDrone and Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)datasets to prove the effectiveness of the proposed method.The experimental results show that our approach brings considerable robustness gains to basic detectors and advanced detection methods,achieving relative growth rates of 51.0%and 39.4%in corruption robustness,respectively.Our code is available at https://github.com/cq100/RD-MIM(accessed on 2 August 2024).展开更多
Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refr...Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse- projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensionak phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60496311).
文摘The contrast function remains to be an open problem in blind source separation (BSS) when the number of source signals is unknown and/or dynamically changed. The paper studies this problem and proves that the mutual information is still the contrast function for BSS if the mixing matrix is of full column rank. The mutual information reaches its minimum at the separation points, where the random outputs of the BSS system are the scaled and permuted source signals, while the others are zero outputs. Using the property that the transpose of the mixing matrix and a matrix composed by m observed signals have the indentical null space with probability one, a practical method, which can detect the unknown number of source signals n, ulteriorly traces the dynamical change of the sources number with a few of data, is proposed. The effectiveness of the proposed theorey and the developed novel algorithm is verified by adaptive BSS simulations with unknown and dynamically changing number of source signals.
基金supported by the National Natural Science Foundation of China under Grant 61671219.
文摘Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity and intraclass variability of small objects,and UAV-specific nuisances such as uncontrolledweather conditions.Unlike previous approaches focusing on high-level semantic information,we report the importance of underlying features to improve detection accuracy and robustness fromthe information-theoretic perspective.Specifically,we propose a robust and discriminative feature learning approach through mutual information maximization(RD-MIM),which can be integrated into numerous object detection methods for aerial images.Firstly,we present the rank sample mining method to reduce underlying feature differences between the natural image domain and the aerial image domain.Then,we design a momentum contrast learning strategy to make object features similar to the same category and dissimilar to different categories.Finally,we construct a transformer-based global attention mechanism to boost object location semantics by leveraging the high interrelation of different receptive fields.We conduct extensive experiments on the VisDrone and Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)datasets to prove the effectiveness of the proposed method.The experimental results show that our approach brings considerable robustness gains to basic detectors and advanced detection methods,achieving relative growth rates of 51.0%and 39.4%in corruption robustness,respectively.Our code is available at https://github.com/cq100/RD-MIM(accessed on 2 August 2024).
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KJCX2-YW-N42)the Key Project of the National Natural Science Foundation of China (Grant No.10734070)+3 种基金the National Natural Science Foundation of China (Grant No.11205157)the National Basic Research Program of China (Grant Nos. 2009CB930804 and 2012CB825800)the Fundamental Research Funds for the Central Universities,China (Grant No. WK2310000021)the China Postdoctoral Science Foundation (Grant No. 2011M501064)
文摘Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse- projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensionak phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.