New circuit implementations of electronically tunable first and second order allpass filter (AP) structures using a Multiplication Mode Current Conveyor (MMCC) building block are presented. The control voltage (V) of ...New circuit implementations of electronically tunable first and second order allpass filter (AP) structures using a Multiplication Mode Current Conveyor (MMCC) building block are presented. The control voltage (V) of the MMCC tunes the desired phase (θ) while the time constant (τ) is adjustable by a Differential Voltage Current Conveyor Transconductance Amplifier (DVCCTA)-based synthetic lossless grounded inductor (L). The circuits are analyzed taking into account the device imperfections which show low active sensitivity features of the designs. The effects of port transfer error (ε) and that of the parasitic capacitances of the active devices had been meticulously examined which indicated that certain deviations in nominal design equations occur;these however, could be minimized with appropriate choice of the circuit passive components. Readily available AD-844 type Current Feedback Amplifier (CFA) elements are utilized for the topology implementation. Satisfactory test results on electronic θ-tunability, upto about 300 KHz, had been verified by PSPICE simulation and with hardware experimentation.展开更多
An RF bandpass filter with a Q-enhancement active inductor is presented. The design technique for a tunable Q-enhancement CMOS active inductor operating in the wide RF-band is described. Moreover,issues related to noi...An RF bandpass filter with a Q-enhancement active inductor is presented. The design technique for a tunable Q-enhancement CMOS active inductor operating in the wide RF-band is described. Moreover,issues related to noise and stability of the active inductor are explained. The filter was fabricated in 0.18μm CMOS technolo- gy,and the circuit occupied an active area of only 150μm ×200μm. Measurement results show that the filter centered at 2. 44GHz with about 60MHz bandwidth (3dB) is tunable in center frequency from about 2.07 to 2. 44GHz. The ldB compression point is - 15dBm while consuming 10. 8mW of DC power,and a maximum quality factor of 103 is attained at the center frequency of 2.07GHz.展开更多
文摘New circuit implementations of electronically tunable first and second order allpass filter (AP) structures using a Multiplication Mode Current Conveyor (MMCC) building block are presented. The control voltage (V) of the MMCC tunes the desired phase (θ) while the time constant (τ) is adjustable by a Differential Voltage Current Conveyor Transconductance Amplifier (DVCCTA)-based synthetic lossless grounded inductor (L). The circuits are analyzed taking into account the device imperfections which show low active sensitivity features of the designs. The effects of port transfer error (ε) and that of the parasitic capacitances of the active devices had been meticulously examined which indicated that certain deviations in nominal design equations occur;these however, could be minimized with appropriate choice of the circuit passive components. Readily available AD-844 type Current Feedback Amplifier (CFA) elements are utilized for the topology implementation. Satisfactory test results on electronic θ-tunability, upto about 300 KHz, had been verified by PSPICE simulation and with hardware experimentation.
文摘An RF bandpass filter with a Q-enhancement active inductor is presented. The design technique for a tunable Q-enhancement CMOS active inductor operating in the wide RF-band is described. Moreover,issues related to noise and stability of the active inductor are explained. The filter was fabricated in 0.18μm CMOS technolo- gy,and the circuit occupied an active area of only 150μm ×200μm. Measurement results show that the filter centered at 2. 44GHz with about 60MHz bandwidth (3dB) is tunable in center frequency from about 2.07 to 2. 44GHz. The ldB compression point is - 15dBm while consuming 10. 8mW of DC power,and a maximum quality factor of 103 is attained at the center frequency of 2.07GHz.