Vertical ZnO nanotube (ZNT) arrays were synthesized onto an indium doped tin oxide (ITO) glass substrate by a simple electrochemical deposition technique followed by a selective etching process. Scanning electron ...Vertical ZnO nanotube (ZNT) arrays were synthesized onto an indium doped tin oxide (ITO) glass substrate by a simple electrochemical deposition technique followed by a selective etching process. Scanning electron microscopy (SEM) showed formation of well-faceted hexagonal ZNT arrays spreading uniformly over a large area. X-ray diffraction (XRD) of ZNT layer showed substantially higher intensity for the (0002) diffraction peak, indicating that the ZnO crystallites were well aligned with their c-axis. Profilometer measurements of the ZNT layer showed an average thickness of -7 μm. Diameter size distribution (DSD) analysis showed that ZNTs exhibited a narrow diameter size distribution in the range of 65-120 nm and centered at -75 nm. The photoluminescence (PL) spectrum measurement showed violet and blue luminescence peaks that were centered at 410 and 480 nm, respectively, indicating the presence of internal defects. Ultra-violet (UV) spectroscopy showed major absorbance peak at ,-348 nm, exhibiting an increase in energy gap value of 3.4 eV. By employing the formed ZNTs as the photo-anode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.01% was achieved with a fill factor of 54%. Quantum efficiency studies showed the maximum of incident photon-to-electron conversion efficiency in a visible region located at 590-550 nm range.展开更多
Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace...Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.展开更多
Indium doped Zn O films were grown on quartz glass substrates by radio frequency magnetron sputtering from powder targets. Indium content in the targets varied from 1at% to 9at%. In doping on the structure, optical an...Indium doped Zn O films were grown on quartz glass substrates by radio frequency magnetron sputtering from powder targets. Indium content in the targets varied from 1at% to 9at%. In doping on the structure, optical and electrical properties of Zn O thin films were studied. X-ray diffraction shows that all the films are hexagonal wurtzite with c-axis perpendicular to the substrates. There is a positive strain in the films and it increases with indium content. All the films show a high transmittance of 86% in the visible light region. Undoped Zn O thin film exhibits a high transmittance in the near infrared region. The transmittance of indium doped Zn O thin films decreases sharply in the near infrared region, and a cut-off wavelength can be found. The lowest resistivity of 4.3×10^(-4) Ω·cm and the highest carrier concentration of 1.86×10^(21) cm^(-3) can be obtained from Zn O thin films with an indium content of 5at% in the target.展开更多
A near-infrared germanium(Ge)Schottky photodetector(PD)with an ultrathin silicon(Si)barrier enhancement layer between the indium-doped tin oxide(ITO)electrode and Ge epilayer on Si or silicon-on-insulator(SOI)is propo...A near-infrared germanium(Ge)Schottky photodetector(PD)with an ultrathin silicon(Si)barrier enhancement layer between the indium-doped tin oxide(ITO)electrode and Ge epilayer on Si or silicon-on-insulator(SOI)is proposed and fabricated.The well-behaved ITO/Si cap/Ge Schottky junctions without intentional doping process for the Ge epilayer are formed on the Si and SOI substrates.The Si-and SOI-based ITO/Si cap/Ge Schottky PDs exhibit low dark current densities of 33 mA/cm2 and 44 mA/cm2,respectively.Benefited from the high transmissivity of ITO electrode and the reflectivity of SOI substrate,an optical responsivity of 0.19 A/W at 1550 nm wavelength is obtained for the SOI-based ITO/Si cap/Ge Schottky PD.These complementary metal–oxide–semiconductor(CMOS)compatible Si(or SOI)-based ITO/Si cap/Ge Schottky PDs are quite useful for detecting near-infrared wavelengths with high efficiency.展开更多
基金Department of Science and Technology (DST), Government of India was gratefully acknowledged for their financial support under the NATAG program monitored by Dr. G. Sundararajan
文摘Vertical ZnO nanotube (ZNT) arrays were synthesized onto an indium doped tin oxide (ITO) glass substrate by a simple electrochemical deposition technique followed by a selective etching process. Scanning electron microscopy (SEM) showed formation of well-faceted hexagonal ZNT arrays spreading uniformly over a large area. X-ray diffraction (XRD) of ZNT layer showed substantially higher intensity for the (0002) diffraction peak, indicating that the ZnO crystallites were well aligned with their c-axis. Profilometer measurements of the ZNT layer showed an average thickness of -7 μm. Diameter size distribution (DSD) analysis showed that ZNTs exhibited a narrow diameter size distribution in the range of 65-120 nm and centered at -75 nm. The photoluminescence (PL) spectrum measurement showed violet and blue luminescence peaks that were centered at 410 and 480 nm, respectively, indicating the presence of internal defects. Ultra-violet (UV) spectroscopy showed major absorbance peak at ,-348 nm, exhibiting an increase in energy gap value of 3.4 eV. By employing the formed ZNTs as the photo-anode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.01% was achieved with a fill factor of 54%. Quantum efficiency studies showed the maximum of incident photon-to-electron conversion efficiency in a visible region located at 590-550 nm range.
基金supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金the National Basic Research Program of China (Grant Nos. 2011CB201605 and 2011CB201606)the National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.
基金Funded by the Fundamental Research Fund for the Central Universities(No.CDJXS10102207)the National Natural Science Foundation of China(Nos.11075314,11404302 and 50942021)+2 种基金the Natural Science Foundation of Chongqing City(2011BA4031)the Third Stage of“211”Innovative Talent Training Project(No.S-09109)the Sharing Fund of Large-scale Equipment of Chongqing University(Nos.2010063072 and 2010121556)
文摘Indium doped Zn O films were grown on quartz glass substrates by radio frequency magnetron sputtering from powder targets. Indium content in the targets varied from 1at% to 9at%. In doping on the structure, optical and electrical properties of Zn O thin films were studied. X-ray diffraction shows that all the films are hexagonal wurtzite with c-axis perpendicular to the substrates. There is a positive strain in the films and it increases with indium content. All the films show a high transmittance of 86% in the visible light region. Undoped Zn O thin film exhibits a high transmittance in the near infrared region. The transmittance of indium doped Zn O thin films decreases sharply in the near infrared region, and a cut-off wavelength can be found. The lowest resistivity of 4.3×10^(-4) Ω·cm and the highest carrier concentration of 1.86×10^(21) cm^(-3) can be obtained from Zn O thin films with an indium content of 5at% in the target.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200103)the National Natural Science Foundation of China(Grant No.61474094)Principal Fund of Minnan Normal University(Grant No.KJ2020006).
文摘A near-infrared germanium(Ge)Schottky photodetector(PD)with an ultrathin silicon(Si)barrier enhancement layer between the indium-doped tin oxide(ITO)electrode and Ge epilayer on Si or silicon-on-insulator(SOI)is proposed and fabricated.The well-behaved ITO/Si cap/Ge Schottky junctions without intentional doping process for the Ge epilayer are formed on the Si and SOI substrates.The Si-and SOI-based ITO/Si cap/Ge Schottky PDs exhibit low dark current densities of 33 mA/cm2 and 44 mA/cm2,respectively.Benefited from the high transmissivity of ITO electrode and the reflectivity of SOI substrate,an optical responsivity of 0.19 A/W at 1550 nm wavelength is obtained for the SOI-based ITO/Si cap/Ge Schottky PD.These complementary metal–oxide–semiconductor(CMOS)compatible Si(or SOI)-based ITO/Si cap/Ge Schottky PDs are quite useful for detecting near-infrared wavelengths with high efficiency.