Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info...Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.展开更多
Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a net...Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a network attack-defence game model by using signalling game, which is modelled in the way of dynamic and incomplete information. We improve the traditional attack-defence strategies quantization method to meet the needs of the network signalling game model. Moreover, we give the calculation of the game equilibrium and analyse the optimal defence scheme. Finally, we analyse and verify effectiveness of the model and method through a simulation experiment.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61933010 and 61903301)Shaanxi Aerospace Flight Vehicle Design Key Laboratory。
文摘Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.
基金supported by the National Natural Science Foundation of China under Grant No. 61303074 and No. 61309013the Henan Province Science and Technology Project Funds under Grant No. 12210231002
文摘Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a network attack-defence game model by using signalling game, which is modelled in the way of dynamic and incomplete information. We improve the traditional attack-defence strategies quantization method to meet the needs of the network signalling game model. Moreover, we give the calculation of the game equilibrium and analyse the optimal defence scheme. Finally, we analyse and verify effectiveness of the model and method through a simulation experiment.