传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted stati...传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差。然后设计了一种基于测试样本与训练样本之间距离的加权策略构建加权改进残差,对含有较强微小故障信息的样本赋予较大权值,以增强故障样本的影响。最后,采用基于测量变量与监控统计量之间的加权互信息构建贡献图以识别故障源变量。在连续搅拌反应釜和田纳西伊斯曼(Tennessee Eastman, TE)化工过程上的仿真结果表明,所提方法具有良好的微小故障检测与识别性能。展开更多
模拟电路是工业设备中最重要的元器件,其故障可能造成重大的人员伤亡,甚至造成巨大的经济损失。针对这一问题,提出一种基于核局部线性判别分析(Kernel Local Linear Discriminant Analysis,KLLDA)的故障诊断方案。利用小波分析和统计分...模拟电路是工业设备中最重要的元器件,其故障可能造成重大的人员伤亡,甚至造成巨大的经济损失。针对这一问题,提出一种基于核局部线性判别分析(Kernel Local Linear Discriminant Analysis,KLLDA)的故障诊断方案。利用小波分析和统计分析对原始信号进行预处理,得到原始特征集;利用KLLDA方法进行降维,并与核主成分分析(Kernel Principal Component Analysis,KPCA)和核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)方法进行比较;采用极限学习机(Extreme Learning Machine,ELM)对测试电路的故障进行定位。对两个故障诊断案例的实验结果表明了该方法的有效性,并表明KLLDA在降维方面总体上优于KPCA和KLDA。展开更多
文摘传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差。然后设计了一种基于测试样本与训练样本之间距离的加权策略构建加权改进残差,对含有较强微小故障信息的样本赋予较大权值,以增强故障样本的影响。最后,采用基于测量变量与监控统计量之间的加权互信息构建贡献图以识别故障源变量。在连续搅拌反应釜和田纳西伊斯曼(Tennessee Eastman, TE)化工过程上的仿真结果表明,所提方法具有良好的微小故障检测与识别性能。
文摘针对核独立元分析(kernel independent component analysis,KICA)在非线性动态过程中对微小故障检测率低的问题,提出一种基于加权统计特征KICA(weighted statistical feature KICA,WSFKICA)的故障检测与诊断方法。首先,利用KICA从原始数据中捕获独立元数据和残差数据;然后,通过加权统计特征和滑动窗口获取改进统计特征数据集,并由此数据集构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行过程故障诊断。与传统KICA统计量相比,所提方法的统计量对非线性动态过程中的微小故障具有更高的故障检测性能。应用该方法对一个数值例子和田纳西-伊斯曼(Tennessee-Eastman,TE)过程进行仿真测试,仿真结果显示出所提方法相对于独立元分析(ICA)、KICA、核主成分分析(kernel principal component analysis,KPCA)和统计局部核主成分分析(statistical local kernel principal component analysis,SLKPCA)检测的优势。
文摘模拟电路是工业设备中最重要的元器件,其故障可能造成重大的人员伤亡,甚至造成巨大的经济损失。针对这一问题,提出一种基于核局部线性判别分析(Kernel Local Linear Discriminant Analysis,KLLDA)的故障诊断方案。利用小波分析和统计分析对原始信号进行预处理,得到原始特征集;利用KLLDA方法进行降维,并与核主成分分析(Kernel Principal Component Analysis,KPCA)和核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)方法进行比较;采用极限学习机(Extreme Learning Machine,ELM)对测试电路的故障进行定位。对两个故障诊断案例的实验结果表明了该方法的有效性,并表明KLLDA在降维方面总体上优于KPCA和KLDA。