The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformati...The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformation with a nucleation and growth process. The R-phase nucleates at the precipitate/matrix interface in aged specimens and grows by moving the coherent R/matrix interfaces. The stress field of Ti3Ni4 precipitates plays a much more important role in the formation of the R-phase than dislocations in aged TiNi alloy. The microstructure of the R-phase has also been studied.展开更多
原子尺度原位研究金属纳米颗粒的氧化过程,对理解金属氧化反应机理和合理设计金属纳米材料有重要意义。长期以来,研究人员通过热重分析、X射线衍射、X射线光电子能谱等手段对金属块体材料和薄膜材料的氧化行为和反应机理开展了广泛研究...原子尺度原位研究金属纳米颗粒的氧化过程,对理解金属氧化反应机理和合理设计金属纳米材料有重要意义。长期以来,研究人员通过热重分析、X射线衍射、X射线光电子能谱等手段对金属块体材料和薄膜材料的氧化行为和反应机理开展了广泛研究。但当金属的尺寸缩小到纳米尺度时,其比表面积、电子结构都与块体材料显著不同,从而导致其氧化行为和反应机理也与块体材料产生差异。由于纳米颗粒体积小,氧化速率快,传统方法很难对其微观的氧化机理进行原位研究。受益于环境控制的电子显微镜技术(atmosphere controlled TEM technologies)的发展,人们有机会在原子尺度对金属纳米颗粒的氧化行为进行系统研究,包括柯肯达尔效应、氧化动力学过程等。然而目前对金属纳米颗粒氧化的研究仍然处于初期阶段,其氧化初期的形核过程仍有待揭示,温度、氧气分压、载体作用对金属纳米颗粒氧化的影响仍有待进一步研究。本文主要以近几年利用原位TEM研究金属纳米颗粒氧化的工作为例,简要介绍这些工作在认识金属氧化理论和推进反应机理的理解方面的最新进展,并探讨了未来研究的机遇和挑战。展开更多
Boron nitride nanotubes(BNNTs)were treated as brittle materials and could be used to enhance the composite mechanical properties.Many approaches were used to verify the theoretical prediction experimentally,but how to...Boron nitride nanotubes(BNNTs)were treated as brittle materials and could be used to enhance the composite mechanical properties.Many approaches were used to verify the theoretical prediction experimentally,but how to in situ real-time characterize nanomechanical properties of BNNTs was still interested to the researchers.An in situ transmission electron microscopy(TEM)equipped with a force transducer holder had been used to study the structure evolution behavior of BNNTs with axial compression.Real-time video and the force transducer had been used synchronously to record the whole force loading process where the mechanical deformation of BNNT began,buckled and ended with fracture.An in dividual ultrathin BNNT was employed to con duct the loading test.The results showed that the elastic deformation happened on the BNNT.Young's modulus?1.05-1.37 Tpa and elasticity coefficient?198.7-255.9 N/m of BNNT were calculated by Euler formula and Hooker's law,respectively.展开更多
We studied silicon,carbon,and SiC xnanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems.Nanodots obtained from fixed electron beam irradi...We studied silicon,carbon,and SiC xnanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems.Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend,with precursor concentrations from pure Si Cl4to 0%SiC l4in CH2Cl2,and electron beam intensity ranges of two orders of magnitude,showing good controllability of the deposition.Secondary electrons contributed to the determination of the lateral sizes of the nanostructures,while the primary beam appeared to have an effect in reducing the vertical growth rate.These results can be used to generate donut-shaped nanostructures.Using a scanning electron beam,line structures with both branched and unbranched morphologies were also obtained.The liquid-phase electron-beaminduced deposition technology is shown to be an effective tool for advanced nanostructured material generation.展开更多
文摘The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformation with a nucleation and growth process. The R-phase nucleates at the precipitate/matrix interface in aged specimens and grows by moving the coherent R/matrix interfaces. The stress field of Ti3Ni4 precipitates plays a much more important role in the formation of the R-phase than dislocations in aged TiNi alloy. The microstructure of the R-phase has also been studied.
文摘原子尺度原位研究金属纳米颗粒的氧化过程,对理解金属氧化反应机理和合理设计金属纳米材料有重要意义。长期以来,研究人员通过热重分析、X射线衍射、X射线光电子能谱等手段对金属块体材料和薄膜材料的氧化行为和反应机理开展了广泛研究。但当金属的尺寸缩小到纳米尺度时,其比表面积、电子结构都与块体材料显著不同,从而导致其氧化行为和反应机理也与块体材料产生差异。由于纳米颗粒体积小,氧化速率快,传统方法很难对其微观的氧化机理进行原位研究。受益于环境控制的电子显微镜技术(atmosphere controlled TEM technologies)的发展,人们有机会在原子尺度对金属纳米颗粒的氧化行为进行系统研究,包括柯肯达尔效应、氧化动力学过程等。然而目前对金属纳米颗粒氧化的研究仍然处于初期阶段,其氧化初期的形核过程仍有待揭示,温度、氧气分压、载体作用对金属纳米颗粒氧化的影响仍有待进一步研究。本文主要以近几年利用原位TEM研究金属纳米颗粒氧化的工作为例,简要介绍这些工作在认识金属氧化理论和推进反应机理的理解方面的最新进展,并探讨了未来研究的机遇和挑战。
基金supported by the National Natural Science Foundation of China(Nos. 51573201, 21773205, 51501209 and 201675165)Key R&D Program of Yunnan Province(No. 2018BA068)+7 种基金NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(No. U1709205)National Key R&D Program of China(No. 2017YFB0406000)the Project of the Chinese Academy of Sciences(Nos. YZ201640 and KFZD-SW409)Public Welfare Project of Zhejiang Province (No. 2016C31026)Science and Technology Major Project of Ningbo (Nos.2016B10038 and 2016S1002)International S&T Cooperation Program of Ningbo(No. 2017D10016)the 3315 Program of Ningbo for financial supportthe financial support by the Science and Technology Major Project of Ningbo (No. 2015S1001)
文摘Boron nitride nanotubes(BNNTs)were treated as brittle materials and could be used to enhance the composite mechanical properties.Many approaches were used to verify the theoretical prediction experimentally,but how to in situ real-time characterize nanomechanical properties of BNNTs was still interested to the researchers.An in situ transmission electron microscopy(TEM)equipped with a force transducer holder had been used to study the structure evolution behavior of BNNTs with axial compression.Real-time video and the force transducer had been used synchronously to record the whole force loading process where the mechanical deformation of BNNT began,buckled and ended with fracture.An in dividual ultrathin BNNT was employed to con duct the loading test.The results showed that the elastic deformation happened on the BNNT.Young's modulus?1.05-1.37 Tpa and elasticity coefficient?198.7-255.9 N/m of BNNT were calculated by Euler formula and Hooker's law,respectively.
基金supported by the U.S.Department of Energy under grants DE-FG02-07ER46453 and DEFG02-07ER46471supports from the Shanghai Leading Academic Discipline Project(B502)+4 种基金the Shanghai Key Laboratory Project(08DZ2230500)the Science and Technology Commission of Shanghai Municipality(11nm0507000)the State Key Laboratory of Functional Materials for Informatics Open Project(SKL201306)the Shanghai Pujiang Program(13PJ1401700)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry are highly acknowledged
文摘We studied silicon,carbon,and SiC xnanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems.Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend,with precursor concentrations from pure Si Cl4to 0%SiC l4in CH2Cl2,and electron beam intensity ranges of two orders of magnitude,showing good controllability of the deposition.Secondary electrons contributed to the determination of the lateral sizes of the nanostructures,while the primary beam appeared to have an effect in reducing the vertical growth rate.These results can be used to generate donut-shaped nanostructures.Using a scanning electron beam,line structures with both branched and unbranched morphologies were also obtained.The liquid-phase electron-beaminduced deposition technology is shown to be an effective tool for advanced nanostructured material generation.