In recent years,defunct satellites mitigation in the geostationary orbit(GEO) has become a hot issue in the space field.How to transfer defunct geostationary satellites to the graveyard orbit safely,economically and e...In recent years,defunct satellites mitigation in the geostationary orbit(GEO) has become a hot issue in the space field.How to transfer defunct geostationary satellites to the graveyard orbit safely,economically and efficiently presents new challenges to spacecraft dynamics and control.This paper conducts an in-depth investigation on tether-tugging de-orbit issues of defunct geostationary satellites.Firstly,a four-phase tether-tugging de-orbit scheme including acceleration,equilibrium,rotation and return is proposed.This scheme takes into consideration how to avoid the risks of tether ripping,tug-target collision,and tether twist,and how to achieve the mission objective of fuel saving.Secondly,the dynamics model of the tether combination system is established based on Lagrange equation,and the four phases of tether-tugging de-orbit scheme are simulated respectively.Simulation results indicate that the scheme is theoretically feasible and satisfies the design objectives of safety,economy and efficiency,providing a technical approach for engineering application.展开更多
A two-stage identification method was developed for attitude-control models of on-orbit satellites for accurate attitude control. The attitude-control models are based on a generalized attitude model (GAM) and its c...A two-stage identification method was developed for attitude-control models of on-orbit satellites for accurate attitude control. The attitude-control models are based on a generalized attitude model (GAM) and its corresponding noise model (NM). These are both low order models which are able to characterize the main satellite dynamics and the corresponding noise. These low-order attitude-control models facilitate improved controller design and state estimation. This identification approach uses two open-loop identification processes, with higher order auxiliary models used in the estimation for filtering and with the filtered signals used to identify the low order GAM and NM. An identification experiment with a micro-satellite simulator was used to verify the effectiveness of the two-stage identification method.展开更多
In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated ...In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the s展开更多
Sea ice has important effect on the marine ecosystem and people living in the surrounding regions in winter.However,the understanding on changes of sea ice in the Bohai and northern Huanghai Sea(BNHS),China is still l...Sea ice has important effect on the marine ecosystem and people living in the surrounding regions in winter.However,the understanding on changes of sea ice in the Bohai and northern Huanghai Sea(BNHS),China is still limited.Based on the images from Visible and InfraRed Radiometer(VIRR)onboard Chinese second generation polar-orbit meteorological series satellites FY-3A/B/C,the sea ice areas in the BNHS were extracted from December 2008 to March 2019,the spatio-temporal distribution charac-teristics of sea ice and the relationship between sea ice area and climatic factors were analyzed,then a preliminary sea ice forecast model based on the climatic factors was developed.The results showed that sea ice area in the BNHS in each December was relatively small and rather high sea ice occurrence probability appeared in the offshore areas in Liaodong Bay and northern Huanghai Sea.The sea ice area in January or February each year was the largest,and sea ice occurred in most of areas in Liaodong Bay and northern Huanghai Sea with rather high probability and in some areas in Bohai Bay and Laizhou Bay with relatively high probability.How-ever,the sea ice area in each March was the smallest,and sea ice was even melted completely occasionally,hence with relatively low occurrence probability in Liaodong Bay.As for the inter-annual variability of sea ice in the BNHS during the research period,the sea ice area was largest in winter 2010/11 and smallest in winter 2014/15,and annual sea ice area presented a decreasing trend.The at-mospheric temperature,western Pacific subtropical high(WPSH),Asia polar vortex(APV),Asian monsoon circulation(AMC)and Eurasian monsoon circulation(EMC)were very important climatic factors for sea ice formation and they had significant correlations with sea ice area.Therefore,a preliminary sea ice forecast model was constructed by using eight climatic factors including western Pacific subtropical high area index(WPSHAI),western Pacific subtropical high intensity index(WPSHII),western Pacific subtro-pical hi展开更多
The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulat...The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satellites orbits. The precise orbit determination(POD) results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional(3D) accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about30 cm. As for the precise relative orbit determination(PROD), the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demonstrates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit(GEO) satellites is illustrated for POD.展开更多
基金supported by the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No. 2011AA7044026)
文摘In recent years,defunct satellites mitigation in the geostationary orbit(GEO) has become a hot issue in the space field.How to transfer defunct geostationary satellites to the graveyard orbit safely,economically and efficiently presents new challenges to spacecraft dynamics and control.This paper conducts an in-depth investigation on tether-tugging de-orbit issues of defunct geostationary satellites.Firstly,a four-phase tether-tugging de-orbit scheme including acceleration,equilibrium,rotation and return is proposed.This scheme takes into consideration how to avoid the risks of tether ripping,tug-target collision,and tether twist,and how to achieve the mission objective of fuel saving.Secondly,the dynamics model of the tether combination system is established based on Lagrange equation,and the four phases of tether-tugging de-orbit scheme are simulated respectively.Simulation results indicate that the scheme is theoretically feasible and satisfies the design objectives of safety,economy and efficiency,providing a technical approach for engineering application.
文摘A two-stage identification method was developed for attitude-control models of on-orbit satellites for accurate attitude control. The attitude-control models are based on a generalized attitude model (GAM) and its corresponding noise model (NM). These are both low order models which are able to characterize the main satellite dynamics and the corresponding noise. These low-order attitude-control models facilitate improved controller design and state estimation. This identification approach uses two open-loop identification processes, with higher order auxiliary models used in the estimation for filtering and with the filtered signals used to identify the low order GAM and NM. An identification experiment with a micro-satellite simulator was used to verify the effectiveness of the two-stage identification method.
基金supported by the National Key R&D Program of China (Grant No. 2022YFF0503700)the special found of Hubei Luojia Laboratory (220100011)supported by the Dragon 5 cooperation 2020-2024 (project no. 59236)
文摘In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the s
基金supported by the National Research and Development Program of China(Nos.2020YFA0608203 and 2016YFC1402003)the FengYun Application Pioneering Project of China Meteorological Administration(No.FYAPP2021)+1 种基金the National Natural Science Foundation of China(No.42001362)the NUIST-Reading Research Institute Pump-Priming Application.
文摘Sea ice has important effect on the marine ecosystem and people living in the surrounding regions in winter.However,the understanding on changes of sea ice in the Bohai and northern Huanghai Sea(BNHS),China is still limited.Based on the images from Visible and InfraRed Radiometer(VIRR)onboard Chinese second generation polar-orbit meteorological series satellites FY-3A/B/C,the sea ice areas in the BNHS were extracted from December 2008 to March 2019,the spatio-temporal distribution charac-teristics of sea ice and the relationship between sea ice area and climatic factors were analyzed,then a preliminary sea ice forecast model based on the climatic factors was developed.The results showed that sea ice area in the BNHS in each December was relatively small and rather high sea ice occurrence probability appeared in the offshore areas in Liaodong Bay and northern Huanghai Sea.The sea ice area in January or February each year was the largest,and sea ice occurred in most of areas in Liaodong Bay and northern Huanghai Sea with rather high probability and in some areas in Bohai Bay and Laizhou Bay with relatively high probability.How-ever,the sea ice area in each March was the smallest,and sea ice was even melted completely occasionally,hence with relatively low occurrence probability in Liaodong Bay.As for the inter-annual variability of sea ice in the BNHS during the research period,the sea ice area was largest in winter 2010/11 and smallest in winter 2014/15,and annual sea ice area presented a decreasing trend.The at-mospheric temperature,western Pacific subtropical high(WPSH),Asia polar vortex(APV),Asian monsoon circulation(AMC)and Eurasian monsoon circulation(EMC)were very important climatic factors for sea ice formation and they had significant correlations with sea ice area.Therefore,a preliminary sea ice forecast model was constructed by using eight climatic factors including western Pacific subtropical high area index(WPSHAI),western Pacific subtropical high intensity index(WPSHII),western Pacific subtro-pical hi
基金co-supported by the National Natural Science Foundation of China (Nos: 61002033, 61370013)the Program for New Century Excellent Talents in University and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China
文摘The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satellites orbits. The precise orbit determination(POD) results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional(3D) accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about30 cm. As for the precise relative orbit determination(PROD), the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demonstrates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit(GEO) satellites is illustrated for POD.