The effects of rare earth Ce on the microstructure and mechanical properties of impure copper containing Pb were investigated using OM,SEM,EPMA,TEM and tensile testing.TEM and EDS analysis reveal that spherical CePb3 ...The effects of rare earth Ce on the microstructure and mechanical properties of impure copper containing Pb were investigated using OM,SEM,EPMA,TEM and tensile testing.TEM and EDS analysis reveal that spherical CePb3 particles form after Ce addition.CePb3 particles,with average size of^3.6μm,homogenously distribute in the Cu matrix.Due to small lattice misfit(~4.62%)with Cu matrix,CePb3 particles can act as effective nucleation sites beneficial to the grain refinement.Pb at grain boundaries seriously deteriorates the mechanical properties of Cu.The tensile strength and the elongation of Cu-0.1 Pb are decreased by 43.1%and 56.7%compared with those of pure copper,respectively.Ce can purify grain boundaries,cause the precipitation of CePb3 particles and refine grain sizes,which contribute to significant improvement of the mechanical properties of Cu.Compared with Cu-0.1Pb,the tensile strength(179 MPa)and the elongation(38.5%)of Cu-0.1Pb-0.3Ce are increased by 117.6%and 151.6%,respectively.展开更多
In the present study,to understand the mechanism of Mn on inhibiting Fe-caused Mg corrosion,the corrosion behaviour of commercial pure Mg and Mg-6 Mn alloy in 0.6 M NaCl solution is investigated.It is found that in Mg...In the present study,to understand the mechanism of Mn on inhibiting Fe-caused Mg corrosion,the corrosion behaviour of commercial pure Mg and Mg-6 Mn alloy in 0.6 M NaCl solution is investigated.It is found that in Mg-6 Mn alloy,Fe impurity is incorporated into Mn to form Mn(Fe)phase with Fe as solid solute.The initial galvanic corrosion cannot be reduced through converting Fe-rich phase to Mn(Fe)phase,since Mn(Fe)phase also has relatively strong cathodic activity and has much larger volume fraction than Fe-rich phase.However,the cathodic activation behaviour of pure Mg is inhibited.The cathodic activity even decreases for Mg-Mn alloy with increased exposure time,due to the reduced cathodic HER at the Mn(Fe)particles.Mn can be oxidized at the OCP of Mg-6 Mn alloy,resulting in relatively dense Mn-rich corrosion film on particle surface,which separates the particle from the electrolyte and,consequently,inhibits HER.展开更多
The preparation of high-entropy(HE)ceramics with designed composition is essential for verifying the formability models and evaluating the properties of the ceramics.However,inevitable oxygen contamination in non-oxid...The preparation of high-entropy(HE)ceramics with designed composition is essential for verifying the formability models and evaluating the properties of the ceramics.However,inevitable oxygen contamination in non-oxide ceramics will result in the formation of metal oxide impurity phases remaining in the specimen or even escaping from the specimen during the sintering process,making the elemental compositions of the HE phase deviated from the designed ones.In this work,the preparation and thermodynamic analysis during the processing of equiatomic 9-cation HE carbide(HEC9)ceramics of the IVB,VB,and VIB groups were studied focusing on the removing of the inevitable oxygen impurity existed in the starting carbide powders and the oxygen contamination during the powder mixing processing.The results demonstrate that densification by spark plasma sintering(SPS)by directly using the mixed powders of the corresponding single-component carbides will inhibit the oxygen-removing carbothermal reduction reactions,and most of the oxide impurities will remain in the sample as(Zr,Hf)O_(2)phase.Pretreatment of the mixed powders at high temperatures in vacuum will remove most part of the oxygen impurity but result in a remarkable escape of gaseous Cr owing to the oxygen-removing reaction between Cr_(3)C_(2)and various oxide impurities.It is found that graphite addition enhances the oxygen-removing effect and simultaneously prevents the escape of gaseous Cr.On the other hand,although WC,VC,and Mo2C can also act as oxygen-removing agents,there is no metal-containing gaseous substance formation in the temperature range of this study.By using the heat-treated powders with added graphite,equiatomic HEC9 ceramics were successfully prepared by SPS.展开更多
Sustainable development has long been recognized as one of the most critical issues in today’s energy and environment-conscious society.It has never been more urgent to recycle and reuse the end-of-life cathode mater...Sustainable development has long been recognized as one of the most critical issues in today’s energy and environment-conscious society.It has never been more urgent to recycle and reuse the end-of-life cathode materials.Here,this work systematically investigates the structure-critical degradation mechanism of polycrystalline LiNi_(x)Co_(y)Mn_(1−x−y)O_(2)(NCM),combining experimental characterization and DFT simulations.Targeting the key degradation factors,a synergistic repair strategy based on deep mechanochemical activation and heat treatment was successfully proposed to direct regenerate the degradedNCMmaterial.Studies indicate the induction and promotion of synergistic repair technique on the reconstruction of particlemorphology,the recovery of the chemical composition and crystal structure,and the favorable transformation of the impurities phase in the failed materials.In particular,the synergistic repair process induces a gradient distribution of LiF and further enables partial fluorine doping into the NCM surface,forming abundant oxygen vacancies and increasing the content of highly reactive Ni2+.Benefiting from the comprehensive treatment for the multi-scale and multi-form degradation behaviors,the repaired material exhibits a capacity of 176.8 mA h g^(-1)at 0.1 C,which is comparable to the corresponding commercial material(172.8 mA h g^(-1)).The satisfactory capacity of the recovered cathode proves that it is an effective direct renovating strategy.展开更多
基金Projects(ZR2018MEE005,ZR2018MEE016)supported by the Natural Science Foundation of Shandong Province,ChinaProject(J18KA059)supported by the Higher Educational Science and Technology Program of Shandong Province,ChinaProject(HJ16B01)supported by the Doctoral Fund of Yantai University,China。
文摘The effects of rare earth Ce on the microstructure and mechanical properties of impure copper containing Pb were investigated using OM,SEM,EPMA,TEM and tensile testing.TEM and EDS analysis reveal that spherical CePb3 particles form after Ce addition.CePb3 particles,with average size of^3.6μm,homogenously distribute in the Cu matrix.Due to small lattice misfit(~4.62%)with Cu matrix,CePb3 particles can act as effective nucleation sites beneficial to the grain refinement.Pb at grain boundaries seriously deteriorates the mechanical properties of Cu.The tensile strength and the elongation of Cu-0.1 Pb are decreased by 43.1%and 56.7%compared with those of pure copper,respectively.Ce can purify grain boundaries,cause the precipitation of CePb3 particles and refine grain sizes,which contribute to significant improvement of the mechanical properties of Cu.Compared with Cu-0.1Pb,the tensile strength(179 MPa)and the elongation(38.5%)of Cu-0.1Pb-0.3Ce are increased by 117.6%and 151.6%,respectively.
基金financial support by the National Nature Science Foundation of China(No.51601036 and U1737102)the Fundamental Research Funds for the Central Universities(N170204010 and N162410002-2-4)Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)
文摘In the present study,to understand the mechanism of Mn on inhibiting Fe-caused Mg corrosion,the corrosion behaviour of commercial pure Mg and Mg-6 Mn alloy in 0.6 M NaCl solution is investigated.It is found that in Mg-6 Mn alloy,Fe impurity is incorporated into Mn to form Mn(Fe)phase with Fe as solid solute.The initial galvanic corrosion cannot be reduced through converting Fe-rich phase to Mn(Fe)phase,since Mn(Fe)phase also has relatively strong cathodic activity and has much larger volume fraction than Fe-rich phase.However,the cathodic activation behaviour of pure Mg is inhibited.The cathodic activity even decreases for Mg-Mn alloy with increased exposure time,due to the reduced cathodic HER at the Mn(Fe)particles.Mn can be oxidized at the OCP of Mg-6 Mn alloy,resulting in relatively dense Mn-rich corrosion film on particle surface,which separates the particle from the electrolyte and,consequently,inhibits HER.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52032001 and 51872045).
文摘The preparation of high-entropy(HE)ceramics with designed composition is essential for verifying the formability models and evaluating the properties of the ceramics.However,inevitable oxygen contamination in non-oxide ceramics will result in the formation of metal oxide impurity phases remaining in the specimen or even escaping from the specimen during the sintering process,making the elemental compositions of the HE phase deviated from the designed ones.In this work,the preparation and thermodynamic analysis during the processing of equiatomic 9-cation HE carbide(HEC9)ceramics of the IVB,VB,and VIB groups were studied focusing on the removing of the inevitable oxygen impurity existed in the starting carbide powders and the oxygen contamination during the powder mixing processing.The results demonstrate that densification by spark plasma sintering(SPS)by directly using the mixed powders of the corresponding single-component carbides will inhibit the oxygen-removing carbothermal reduction reactions,and most of the oxide impurities will remain in the sample as(Zr,Hf)O_(2)phase.Pretreatment of the mixed powders at high temperatures in vacuum will remove most part of the oxygen impurity but result in a remarkable escape of gaseous Cr owing to the oxygen-removing reaction between Cr_(3)C_(2)and various oxide impurities.It is found that graphite addition enhances the oxygen-removing effect and simultaneously prevents the escape of gaseous Cr.On the other hand,although WC,VC,and Mo2C can also act as oxygen-removing agents,there is no metal-containing gaseous substance formation in the temperature range of this study.By using the heat-treated powders with added graphite,equiatomic HEC9 ceramics were successfully prepared by SPS.
基金National Natural Science Foundation of China,Grant/Award Number:52074098the State Grid Heilongjiang Electric Power Co.,Ltd.,Technology Project Funding,Grant/Award Number:52243723000C+1 种基金Foundation of Key Program of Sci-Tech Innovation in Ningbo,Grant/Award Number:2019B10114Natural Science Foundation of Heilongjiang Province,Grant/Award Number:YQ2021E039。
文摘Sustainable development has long been recognized as one of the most critical issues in today’s energy and environment-conscious society.It has never been more urgent to recycle and reuse the end-of-life cathode materials.Here,this work systematically investigates the structure-critical degradation mechanism of polycrystalline LiNi_(x)Co_(y)Mn_(1−x−y)O_(2)(NCM),combining experimental characterization and DFT simulations.Targeting the key degradation factors,a synergistic repair strategy based on deep mechanochemical activation and heat treatment was successfully proposed to direct regenerate the degradedNCMmaterial.Studies indicate the induction and promotion of synergistic repair technique on the reconstruction of particlemorphology,the recovery of the chemical composition and crystal structure,and the favorable transformation of the impurities phase in the failed materials.In particular,the synergistic repair process induces a gradient distribution of LiF and further enables partial fluorine doping into the NCM surface,forming abundant oxygen vacancies and increasing the content of highly reactive Ni2+.Benefiting from the comprehensive treatment for the multi-scale and multi-form degradation behaviors,the repaired material exhibits a capacity of 176.8 mA h g^(-1)at 0.1 C,which is comparable to the corresponding commercial material(172.8 mA h g^(-1)).The satisfactory capacity of the recovered cathode proves that it is an effective direct renovating strategy.