Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology...Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology laboratory. Using the sigma metric, this study assessed the performance of the Biochemistry analytical system of a medical biology laboratory in Côte d'Ivoire. Methods: Six Sigma methodology was applied to 3 analytes (alanine aminotransferase, glucose and creatinine). Performance indicators such as measurement imprecision and bias were determined based on the results of internal and external quality controls. The sigma number was calculated using the total allowable error values proposed by Ricos et al. Results: For both control levels, ALT had a sigma number greater than 6 (7.6 for normal control and 7.9 for pathological control). However, low sigma numbers, less than or equal to 2 for creatinine (1.4 for normal control and 2 for pathological control) and less than 1 for glucose were found. Conclusion: This study revealed good analytical performance of ALT from the point of view of 6 sigma analysis. However, modifications to the overall quality control procedure for glucose and creatinine are needed to improve their analytical performance. The study should be extended to the entire laboratory’s analytes in order to modify the strategies of quality control procedures based on metric analysis for an overall improvement in analytical performance.展开更多
AIM To study sigma metrics and quality goal index ratio(QGI). METHODS The retrospective study was conducted at the Clinical Biochemistry Laboratory, PGIMS, Rohtak, which recently became a National Accreditation Board ...AIM To study sigma metrics and quality goal index ratio(QGI). METHODS The retrospective study was conducted at the Clinical Biochemistry Laboratory, PGIMS, Rohtak, which recently became a National Accreditation Board for Testing and Calibration of Laboratories accredited lab as per the International Organization for Standardization 15189:2012 and provides service to a > 1700-bed tertiary care hospital. Data of 16 analytes was extracted over a period of one year from January 2017 to December 2017 for calculation of precision, accuracy, sigma metrics, total error, and QGI. RESULTS The average coefficient of variation ranged from 2.12%(albumin) to 5.42%(creatinine) for level 2 internal quality control and 2%(albumin) to 3.62%(high density lipoprotein-cholesterol) for level 3 internal quality control. Average coefficient of variation of all the parameters was below 5%, reflecting very good precision. The sigma metrics for level 2 indicated that 11(68.5%) of the 16 parameters fall short of meeting Six Sigma quality performance. Of these, five failed to meet minimum sigma quality performance with metrics less than 3, and another six just met minimal acceptable performance with sigma metrics between 3 and 6. For level 3, the data collected indicated eight(50%) of the parameters did not achieve Six Sigma quality performance, out of which three had metrics less than 3, and five had metrics between 3 and 6. QGI ratio indicated that the main problem was inaccuracy in the case of total cholesterol, aspartate transaminase, and alanine transaminase(QGI > 1.2), imprecision in the case of urea(QGI < 0.8), and both imprecision and inaccuracy for glucose.CONCLUSION On the basis of sigma metrics and QGI, it may be concluded that the Clinical Biochemistry Laboratory, PGIMS, Rohtak was able to achieve satisfactory results with world class performance for many analytes one year preceding the accreditation by the National Accreditation Board for Testing and Calibration of Laboratories. Aspartate transaminase and alanine transaminase re展开更多
文摘Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology laboratory. Using the sigma metric, this study assessed the performance of the Biochemistry analytical system of a medical biology laboratory in Côte d'Ivoire. Methods: Six Sigma methodology was applied to 3 analytes (alanine aminotransferase, glucose and creatinine). Performance indicators such as measurement imprecision and bias were determined based on the results of internal and external quality controls. The sigma number was calculated using the total allowable error values proposed by Ricos et al. Results: For both control levels, ALT had a sigma number greater than 6 (7.6 for normal control and 7.9 for pathological control). However, low sigma numbers, less than or equal to 2 for creatinine (1.4 for normal control and 2 for pathological control) and less than 1 for glucose were found. Conclusion: This study revealed good analytical performance of ALT from the point of view of 6 sigma analysis. However, modifications to the overall quality control procedure for glucose and creatinine are needed to improve their analytical performance. The study should be extended to the entire laboratory’s analytes in order to modify the strategies of quality control procedures based on metric analysis for an overall improvement in analytical performance.
文摘AIM To study sigma metrics and quality goal index ratio(QGI). METHODS The retrospective study was conducted at the Clinical Biochemistry Laboratory, PGIMS, Rohtak, which recently became a National Accreditation Board for Testing and Calibration of Laboratories accredited lab as per the International Organization for Standardization 15189:2012 and provides service to a > 1700-bed tertiary care hospital. Data of 16 analytes was extracted over a period of one year from January 2017 to December 2017 for calculation of precision, accuracy, sigma metrics, total error, and QGI. RESULTS The average coefficient of variation ranged from 2.12%(albumin) to 5.42%(creatinine) for level 2 internal quality control and 2%(albumin) to 3.62%(high density lipoprotein-cholesterol) for level 3 internal quality control. Average coefficient of variation of all the parameters was below 5%, reflecting very good precision. The sigma metrics for level 2 indicated that 11(68.5%) of the 16 parameters fall short of meeting Six Sigma quality performance. Of these, five failed to meet minimum sigma quality performance with metrics less than 3, and another six just met minimal acceptable performance with sigma metrics between 3 and 6. For level 3, the data collected indicated eight(50%) of the parameters did not achieve Six Sigma quality performance, out of which three had metrics less than 3, and five had metrics between 3 and 6. QGI ratio indicated that the main problem was inaccuracy in the case of total cholesterol, aspartate transaminase, and alanine transaminase(QGI > 1.2), imprecision in the case of urea(QGI < 0.8), and both imprecision and inaccuracy for glucose.CONCLUSION On the basis of sigma metrics and QGI, it may be concluded that the Clinical Biochemistry Laboratory, PGIMS, Rohtak was able to achieve satisfactory results with world class performance for many analytes one year preceding the accreditation by the National Accreditation Board for Testing and Calibration of Laboratories. Aspartate transaminase and alanine transaminase re