Three-dimensional numerical simulation is carried out to investigate the flow and heat transfer characteristics of impingement/effusion cooling systems. The impingement/effusion holes are arranged on two parallel perf...Three-dimensional numerical simulation is carried out to investigate the flow and heat transfer characteristics of impingement/effusion cooling systems. The impingement/effusion holes are arranged on two parallel perforated plates respectively in a staggered manner. Every effusion hole has an inclined angle of 30° with respect to the surface. The two parallel plates are spaced three times the diameter of the effusion hole. The ratio of center-to-center spacing of adjacent holes to the diameter of the effusion hole is set to be 3.0, 4.0 and 5.0 respectively. The flow field, temperature field and wall film cooling effectiveness are calculated for different blowing ratios ranging from 0.5 to 1.5. In general, the wall cooling effectiveness increases as the center-to-center spacing of adjacent holes decreases or the blowing ratio increases.展开更多
基金National Natural Science Foundation of China (50876041)Aeronautical Science Foundation of China (2008ZB2014)
文摘Three-dimensional numerical simulation is carried out to investigate the flow and heat transfer characteristics of impingement/effusion cooling systems. The impingement/effusion holes are arranged on two parallel perforated plates respectively in a staggered manner. Every effusion hole has an inclined angle of 30° with respect to the surface. The two parallel plates are spaced three times the diameter of the effusion hole. The ratio of center-to-center spacing of adjacent holes to the diameter of the effusion hole is set to be 3.0, 4.0 and 5.0 respectively. The flow field, temperature field and wall film cooling effectiveness are calculated for different blowing ratios ranging from 0.5 to 1.5. In general, the wall cooling effectiveness increases as the center-to-center spacing of adjacent holes decreases or the blowing ratio increases.