Quality function deployment (QFD) is a well-known customer-oriented product design methodology. Rating the final importance of customer requirements (CRs) is really a very es- sential starting point in the impleme...Quality function deployment (QFD) is a well-known customer-oriented product design methodology. Rating the final importance of customer requirements (CRs) is really a very es- sential starting point in the implementation of QFD, since it largely affects the target setting value of design requirements. This pa- per aims to propose a novel method to deal with the relative importance ratings (RIRs) of CRs problem considering customers' diversified requirements and unknown information on customers' weights, which is an indispensable process for determining the final importance ratings of CRs. First, a new concept of customer's assessment structure is proposed according to the basic idea of grey relational analysis (GRA), and then a constrained nonlinear optimization model is constructed to describe the assessment information aggregation factors of CRs considering customers' personalized and diversified requirements. Furthermore, an im- mune particle swarm optimization (IPSO) algorithm is designed to solve the model, and the weight vector of customers is obtained. Finally, a car door design example is introduced to illustrate the novel hybrid GRA-IPSO method's potential application in deter- mining the RIRs of CRs.展开更多
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca...With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method.展开更多
为提高工业控制系统入侵检测的准确性,面向Modbus TCP协议的工业控制系统提出一种基于KPCA-IPSO-OCSVM算法的入侵检测方法。首先采用核主成分分析(kernel principal component analysis,KPCA)方法对强非线性、高复杂度和高维度的工业数...为提高工业控制系统入侵检测的准确性,面向Modbus TCP协议的工业控制系统提出一种基于KPCA-IPSO-OCSVM算法的入侵检测方法。首先采用核主成分分析(kernel principal component analysis,KPCA)方法对强非线性、高复杂度和高维度的工业数据进行特征提取,消除冗余特征,降低数据维度;然后采用免疫粒子群(immune particle swarm optimization,IPSO)优化算法单类支持向量机(one class support vector machine,OCSVM)构建更准确的入侵检测模型。在实验室建立仿真环境,模拟工业控制系统的运行场景,实验结果表明,所提出方法可以精确甄别异常行为,提升入侵检测的准确性和工业控制系统的安全性。展开更多
Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering....Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering.Furthermore,a general maskedbased additive non-homogeneous Poisson process(NHPP) model was considered to analyze component reliability.However,the problem of masked-based additive model lies in the difficulty of estimating parameters.The maximum likelihood estimation procedure was derived to estimate parameters.Finally,a numerical example was given to illustrate the applicability of proposed model,and the immune particle swarm optimization(IPSO) algorithm was used in maximize log-likelihood function.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(K5051399035BDY251412+1 种基金JB150601)the Soft Science Project of Shaanxi Province(2013KRZ25)
文摘Quality function deployment (QFD) is a well-known customer-oriented product design methodology. Rating the final importance of customer requirements (CRs) is really a very es- sential starting point in the implementation of QFD, since it largely affects the target setting value of design requirements. This pa- per aims to propose a novel method to deal with the relative importance ratings (RIRs) of CRs problem considering customers' diversified requirements and unknown information on customers' weights, which is an indispensable process for determining the final importance ratings of CRs. First, a new concept of customer's assessment structure is proposed according to the basic idea of grey relational analysis (GRA), and then a constrained nonlinear optimization model is constructed to describe the assessment information aggregation factors of CRs considering customers' personalized and diversified requirements. Furthermore, an im- mune particle swarm optimization (IPSO) algorithm is designed to solve the model, and the weight vector of customers is obtained. Finally, a car door design example is introduced to illustrate the novel hybrid GRA-IPSO method's potential application in deter- mining the RIRs of CRs.
基金supported by the National Natural Science Foundation of China(61172070,61111130122)the Innovative Research Team of Shaanxi Province(2013KCT-04)the Specialized Research Fund for the Doctoral Program of Higher Education(20126118110008)
文摘With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method.
文摘为提高工业控制系统入侵检测的准确性,面向Modbus TCP协议的工业控制系统提出一种基于KPCA-IPSO-OCSVM算法的入侵检测方法。首先采用核主成分分析(kernel principal component analysis,KPCA)方法对强非线性、高复杂度和高维度的工业数据进行特征提取,消除冗余特征,降低数据维度;然后采用免疫粒子群(immune particle swarm optimization,IPSO)优化算法单类支持向量机(one class support vector machine,OCSVM)构建更准确的入侵检测模型。在实验室建立仿真环境,模拟工业控制系统的运行场景,实验结果表明,所提出方法可以精确甄别异常行为,提升入侵检测的准确性和工业控制系统的安全性。
基金Technology Foundation of Guizhou Province,China(No.QianKeHeJZi[2015]2064)Scientific Research Foundation for Advanced Talents in Guizhou Institue of Technology and Science,China(No.XJGC20150106)Joint Foundation of Guizhou Province,China(No.QianKeHeLHZi[2015]7105)
文摘Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering.Furthermore,a general maskedbased additive non-homogeneous Poisson process(NHPP) model was considered to analyze component reliability.However,the problem of masked-based additive model lies in the difficulty of estimating parameters.The maximum likelihood estimation procedure was derived to estimate parameters.Finally,a numerical example was given to illustrate the applicability of proposed model,and the immune particle swarm optimization(IPSO) algorithm was used in maximize log-likelihood function.