过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector mac...过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector machine),旨在克服SVM算法在处理非平衡数据时分类超平面容易偏向少数类样本的问题。该算法首先利用SVM算法得到分类超平面。然后迭代进行混合采样,主要包括:(1)删除离分类超平面较远的一些多数类样本;(2)对靠近真实类边界的少数类样本用SMOTE(synthetic minority oversampling technique)过采样,使分类超平面向着真实类边界方向偏移。实验结果表明相比其他相关算法,该算法的F-value值和G-mean值均有较大提高。展开更多
布匹瑕疵检测是纺织工业中产品质量评估的关键环节,实现快速、准确、高效的布匹瑕疵检测对于提升纺织工业的产能具有重要意义.在实际布匹生产过程中,布匹瑕疵在形状、大小及数量分布上存在不平衡问题,且纹理布匹复杂的纹理信息会掩盖瑕...布匹瑕疵检测是纺织工业中产品质量评估的关键环节,实现快速、准确、高效的布匹瑕疵检测对于提升纺织工业的产能具有重要意义.在实际布匹生产过程中,布匹瑕疵在形状、大小及数量分布上存在不平衡问题,且纹理布匹复杂的纹理信息会掩盖瑕疵的特征,加大布匹瑕疵检测难度.本文提出基于深度卷积神经网络的分类不平衡纹理布匹瑕疵检测方法(Detecting defects in imbalanced texture fabric based on deep convolutional neural network,ITF-DCNN),首先建立一种基于通道叠加的ResNet50卷积神经网络模型(ResNet50+)对布匹瑕疵特征进行优化提取;其次提出一种冗余特征过滤的特征金字塔网络(Filter-feature pyramid network,F-FPN)对特征图中的背景特征进行过滤,增强其中瑕疵特征的语义信息;最后构造针对瑕疵数量进行加权的MFL(Multi focal loss)损失函数,减轻数据集不平衡对模型的影响,降低模型对于少数类瑕疵的不敏感性.通过实验对比,提出的方法能有效提升布匹瑕疵检测的准确率及定位精度,同时降低了布匹瑕疵检测的误检率和漏检率,明显优于当前主流的布匹瑕疵检测算法.展开更多
文摘过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector machine),旨在克服SVM算法在处理非平衡数据时分类超平面容易偏向少数类样本的问题。该算法首先利用SVM算法得到分类超平面。然后迭代进行混合采样,主要包括:(1)删除离分类超平面较远的一些多数类样本;(2)对靠近真实类边界的少数类样本用SMOTE(synthetic minority oversampling technique)过采样,使分类超平面向着真实类边界方向偏移。实验结果表明相比其他相关算法,该算法的F-value值和G-mean值均有较大提高。
文摘布匹瑕疵检测是纺织工业中产品质量评估的关键环节,实现快速、准确、高效的布匹瑕疵检测对于提升纺织工业的产能具有重要意义.在实际布匹生产过程中,布匹瑕疵在形状、大小及数量分布上存在不平衡问题,且纹理布匹复杂的纹理信息会掩盖瑕疵的特征,加大布匹瑕疵检测难度.本文提出基于深度卷积神经网络的分类不平衡纹理布匹瑕疵检测方法(Detecting defects in imbalanced texture fabric based on deep convolutional neural network,ITF-DCNN),首先建立一种基于通道叠加的ResNet50卷积神经网络模型(ResNet50+)对布匹瑕疵特征进行优化提取;其次提出一种冗余特征过滤的特征金字塔网络(Filter-feature pyramid network,F-FPN)对特征图中的背景特征进行过滤,增强其中瑕疵特征的语义信息;最后构造针对瑕疵数量进行加权的MFL(Multi focal loss)损失函数,减轻数据集不平衡对模型的影响,降低模型对于少数类瑕疵的不敏感性.通过实验对比,提出的方法能有效提升布匹瑕疵检测的准确率及定位精度,同时降低了布匹瑕疵检测的误检率和漏检率,明显优于当前主流的布匹瑕疵检测算法.