The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and cli- mate change and the effect of forest fire on carbon budgets. This study proposed an alg...Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and cli- mate change and the effect of forest fire on carbon budgets. This study proposed an algorithm to map forest fire burned area using the Moderate-Resolution Imaging Spectroradiameter (MODIS) time series data in Heilongjiang Province, China. The algorithm is divided into two steps: Firstly, the 'core' pixels were extracted to represent the most possible burned pixels based on the comparison of the tem- poral change of Global Environmental Monitoring Index (GEMI), Burned Area Index (BAI) and MODIS active fire products between pre- and post-fires. Secondly, a 15-km distance was set to extract the entire burned areas near the 'core' pixels as more relaxed conditions were used to identify the fire pixels for reducing the omission error as much as possible. The algorithm comprehensively considered the thermal characteristics and the spectral change between pre- and post-fires, which are represented by the MODIS fire products and the spectral index, respectively. Tahe, Mohe and Huma counties of Heilongjiang Province, China were chosen as the study area for burned area mapping and a time series of burned maps were produced from 2000 to 2011. The results show that the algorithm can extract burned areas more accurately with the hiehest accuracy of 96.61%.展开更多
The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed under...The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)recurrence is highly correlated with increased mortality.Microvascular invasion(MVI)is indicative of aggressive tumor biology in HCC.AIM To construct an artificial neural networ...BACKGROUND Hepatocellular carcinoma(HCC)recurrence is highly correlated with increased mortality.Microvascular invasion(MVI)is indicative of aggressive tumor biology in HCC.AIM To construct an artificial neural network(ANN)capable of accurately predicting MVI presence in HCC using magnetic resonance imaging.METHODS This study included 255 patients with HCC with tumors<3 cm.Radiologists annotated the tumors on the T1-weighted plain MR images.Subsequently,a three-layer ANN was constructed using image features as inputs to predict MVI status in patients with HCC.Postoperative pathological examination is considered the gold standard for determining MVI.Receiver operating characteristic analysis was used to evaluate the effectiveness of the algorithm.RESULTS Using the bagging strategy to vote for 50 classifier classification results,a prediction model yielded an area under the curve(AUC)of 0.79.Moreover,correlation analysis revealed that alpha-fetoprotein values and tumor volume were not significantly correlated with the occurrence of MVI,whereas tumor sphericity was significantly correlated with MVI(P<0.01).CONCLUSION Analysis of variable correlations regarding MVI in tumors with diameters<3 cm should prioritize tumor sphericity.The ANN model demonstrated strong predictive MVI for patients with HCC(AUC=0.79).展开更多
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金Under the auspices of Strategic Pilot Science and Technology Projects of Chinese Academic Sciences(No.XDA05090310)
文摘Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and cli- mate change and the effect of forest fire on carbon budgets. This study proposed an algorithm to map forest fire burned area using the Moderate-Resolution Imaging Spectroradiameter (MODIS) time series data in Heilongjiang Province, China. The algorithm is divided into two steps: Firstly, the 'core' pixels were extracted to represent the most possible burned pixels based on the comparison of the tem- poral change of Global Environmental Monitoring Index (GEMI), Burned Area Index (BAI) and MODIS active fire products between pre- and post-fires. Secondly, a 15-km distance was set to extract the entire burned areas near the 'core' pixels as more relaxed conditions were used to identify the fire pixels for reducing the omission error as much as possible. The algorithm comprehensively considered the thermal characteristics and the spectral change between pre- and post-fires, which are represented by the MODIS fire products and the spectral index, respectively. Tahe, Mohe and Huma counties of Heilongjiang Province, China were chosen as the study area for burned area mapping and a time series of burned maps were produced from 2000 to 2011. The results show that the algorithm can extract burned areas more accurately with the hiehest accuracy of 96.61%.
基金supported by the National Natural Science Foundation of China (Nos. 41230318, 41176077, 4130 4096)the National High-tech R&D Program of China (863) (No. 2013AA092501)+2 种基金the PhD Program Foundation of the Ministry of Education of China (No. 201301 32120014)the Fundamental Research Funds for the Central Universities (Nos. 1313017, 1362013)Major National Science and Technology Programs (No. 2016ZX 05024-001-002)
文摘The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.
基金the Tsinghua University Institute of Precision Medicine,No.2022ZLA006.
文摘BACKGROUND Hepatocellular carcinoma(HCC)recurrence is highly correlated with increased mortality.Microvascular invasion(MVI)is indicative of aggressive tumor biology in HCC.AIM To construct an artificial neural network(ANN)capable of accurately predicting MVI presence in HCC using magnetic resonance imaging.METHODS This study included 255 patients with HCC with tumors<3 cm.Radiologists annotated the tumors on the T1-weighted plain MR images.Subsequently,a three-layer ANN was constructed using image features as inputs to predict MVI status in patients with HCC.Postoperative pathological examination is considered the gold standard for determining MVI.Receiver operating characteristic analysis was used to evaluate the effectiveness of the algorithm.RESULTS Using the bagging strategy to vote for 50 classifier classification results,a prediction model yielded an area under the curve(AUC)of 0.79.Moreover,correlation analysis revealed that alpha-fetoprotein values and tumor volume were not significantly correlated with the occurrence of MVI,whereas tumor sphericity was significantly correlated with MVI(P<0.01).CONCLUSION Analysis of variable correlations regarding MVI in tumors with diameters<3 cm should prioritize tumor sphericity.The ANN model demonstrated strong predictive MVI for patients with HCC(AUC=0.79).