BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to...BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to predict preoperatively the need for multiple linear stapler cartridges during DST anastomosis.AIM To develop a deep learning model to predict multiple firings during DST anastomosis based on pelvic magnetic resonance imaging(MRI).METHODS We collected 9476 MR images from 328 mid-low rectal cancer patients undergoing LAR with DST anastomosis,which were randomly divided into a training set(n=260)and testing set(n=68).Binary logistic regression was adopted to create a clinical model using six factors.The sequence of fast spin-echo T2-weighted MRI of the entire pelvis was segmented and analyzed.Pure-image and clinical-image integrated deep learning models were constructed using the mask region-based convolutional neural network segmentation tool and three-dimensional convolutional networks.Sensitivity,specificity,accuracy,positive predictive value(PPV),and area under the receiver operating characteristic curve(AUC)was calculated for each model.RESULTS The prevalence of≥3 linear stapler cartridges was 17.7%(58/328).The prevalence of AL was statistically significantly higher in patients with≥3 cartridges compared to those with≤2 cartridges(25.0%vs 11.8%,P=0.018).Preoperative carcinoembryonic antigen level>5 ng/mL(OR=2.11,95%CI 1.08-4.12,P=0.028)and tumor size≥5 cm(OR=3.57,95%CI 1.61-7.89,P=0.002)were recognized as independent risk factors for use of≥3 linear stapler cartridges.Diagnostic performance was better with the integrated model(accuracy=94.1%,PPV=87.5%,and AUC=0.88)compared with the clinical model(accuracy=86.7%,PPV=38.9%,and AUC=0.72)and the image model(accuracy=91.2%,PPV=83.3%,and AUC=0.81).CONCLUSION MRI-based deep learning model can predict the use of≥3 linear stapler cartridges during DST anastomosis in laparoscopic LAR surgery.This model might help determine the best anastomosis s展开更多
通过摄像头阅读文本可帮助计算机理解文本内容。然而,由于摄像头视野的局限性和中文文本识别的复杂性,计算机有时很难通过摄像头从单张文本图像获取完整的文本内容,因此定义了跨图文本阅读任务,旨在从一对具有重叠区域的文本图像中获取...通过摄像头阅读文本可帮助计算机理解文本内容。然而,由于摄像头视野的局限性和中文文本识别的复杂性,计算机有时很难通过摄像头从单张文本图像获取完整的文本内容,因此定义了跨图文本阅读任务,旨在从一对具有重叠区域的文本图像中获取完整的文本内容。针对跨图文本阅读任务,提出了基于文本行匹配的跨图文本阅读方法。首先采用文本检测网络来裁剪文本行,然后设计了基于多头自注意力机制的文本行匹配网络来预测文本行的匹配关系,最后提出了基于编辑的文本阅读网络,以去除重叠文本并读取文本内容。为了训练和评估跨图文本阅读方法,构造了跨图中文文本阅读数据集(Cross-image Chinese Text Reading Dataset, CCTR)。在CCTR数据集上进行实验,结果表明,相比像素级拼接和识别方法,所提方法能够得到更高的阅读性能,验证了其优越性。展开更多
基金Shanghai Jiaotong University,No.YG2019QNB24This study was reviewed and approved by Ruijin Hospital Ethics Committee(Approval No.2019-82).
文摘BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to predict preoperatively the need for multiple linear stapler cartridges during DST anastomosis.AIM To develop a deep learning model to predict multiple firings during DST anastomosis based on pelvic magnetic resonance imaging(MRI).METHODS We collected 9476 MR images from 328 mid-low rectal cancer patients undergoing LAR with DST anastomosis,which were randomly divided into a training set(n=260)and testing set(n=68).Binary logistic regression was adopted to create a clinical model using six factors.The sequence of fast spin-echo T2-weighted MRI of the entire pelvis was segmented and analyzed.Pure-image and clinical-image integrated deep learning models were constructed using the mask region-based convolutional neural network segmentation tool and three-dimensional convolutional networks.Sensitivity,specificity,accuracy,positive predictive value(PPV),and area under the receiver operating characteristic curve(AUC)was calculated for each model.RESULTS The prevalence of≥3 linear stapler cartridges was 17.7%(58/328).The prevalence of AL was statistically significantly higher in patients with≥3 cartridges compared to those with≤2 cartridges(25.0%vs 11.8%,P=0.018).Preoperative carcinoembryonic antigen level>5 ng/mL(OR=2.11,95%CI 1.08-4.12,P=0.028)and tumor size≥5 cm(OR=3.57,95%CI 1.61-7.89,P=0.002)were recognized as independent risk factors for use of≥3 linear stapler cartridges.Diagnostic performance was better with the integrated model(accuracy=94.1%,PPV=87.5%,and AUC=0.88)compared with the clinical model(accuracy=86.7%,PPV=38.9%,and AUC=0.72)and the image model(accuracy=91.2%,PPV=83.3%,and AUC=0.81).CONCLUSION MRI-based deep learning model can predict the use of≥3 linear stapler cartridges during DST anastomosis in laparoscopic LAR surgery.This model might help determine the best anastomosis s
文摘通过摄像头阅读文本可帮助计算机理解文本内容。然而,由于摄像头视野的局限性和中文文本识别的复杂性,计算机有时很难通过摄像头从单张文本图像获取完整的文本内容,因此定义了跨图文本阅读任务,旨在从一对具有重叠区域的文本图像中获取完整的文本内容。针对跨图文本阅读任务,提出了基于文本行匹配的跨图文本阅读方法。首先采用文本检测网络来裁剪文本行,然后设计了基于多头自注意力机制的文本行匹配网络来预测文本行的匹配关系,最后提出了基于编辑的文本阅读网络,以去除重叠文本并读取文本内容。为了训练和评估跨图文本阅读方法,构造了跨图中文文本阅读数据集(Cross-image Chinese Text Reading Dataset, CCTR)。在CCTR数据集上进行实验,结果表明,相比像素级拼接和识别方法,所提方法能够得到更高的阅读性能,验证了其优越性。