在高分辨率遥感图像分割方法中,分形网络演化算法(fractal net evolution approach,FNEA)是一种经典的影像对象构造方法。但在计算影像对象之间的异质性时,使用根据经验选择的固定权值会导致该算法不能很好地适应不同属性的影像对象分...在高分辨率遥感图像分割方法中,分形网络演化算法(fractal net evolution approach,FNEA)是一种经典的影像对象构造方法。但在计算影像对象之间的异质性时,使用根据经验选择的固定权值会导致该算法不能很好地适应不同属性的影像对象分割。针对这一问题,提出了一种改进的FNEA方法,根据不同影像对象的空间和光谱特征,自适应地计算空间判据权值和紧凑度判据权值,并将不同光谱分量对光谱判据的贡献引入到影像对象之间异质性的计算中。计算机仿真实验结果表明,该文提出的算法对不同属性的影像对象具有很好的适应性,与同类算法相比,图像分割结果得到了较好的改善。展开更多
The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific com...The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Journal of Geographic Information System treats all unethical behavior such as plagiarism seriously. This paper published in Vol.4 No.3 273-278, 2012, has been removed from this site.展开更多
文摘在高分辨率遥感图像分割方法中,分形网络演化算法(fractal net evolution approach,FNEA)是一种经典的影像对象构造方法。但在计算影像对象之间的异质性时,使用根据经验选择的固定权值会导致该算法不能很好地适应不同属性的影像对象分割。针对这一问题,提出了一种改进的FNEA方法,根据不同影像对象的空间和光谱特征,自适应地计算空间判据权值和紧凑度判据权值,并将不同光谱分量对光谱判据的贡献引入到影像对象之间异质性的计算中。计算机仿真实验结果表明,该文提出的算法对不同属性的影像对象具有很好的适应性,与同类算法相比,图像分割结果得到了较好的改善。
文摘The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Journal of Geographic Information System treats all unethical behavior such as plagiarism seriously. This paper published in Vol.4 No.3 273-278, 2012, has been removed from this site.