针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割...针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割,形成多个超像素区域;然后计算并提取影像各个区域的纹理特征信息熵值、光谱特征与邻域均值差分归一化值,分别进行同质性和异质性的有效衡量;并构建评价函数获取最优分割尺度,对这些超像素区域进行初步合并,得到影像的粗分割结果;最后结合各地物的边界权重信息,从全局角度用R-cut的方法对粗分割结果进一步合并,完成对影像的精细分割,生成最终的分割结果。实验选取5个不同场景的高分辨率遥感影像,采用定性和定量两种方法对比分析本文方法与传统R-cut边缘检测分割、Spectral-Rcut边缘检测分割和Textured-Rcut边缘检测分割方法。实验结果表明,MSR-cut边缘检测分割方法能够有效提高分割精度,增强噪声鲁棒性,可取得较好的分割视觉效果。展开更多
Image segmentation refers to the technique and process of partitioning a digital image into multiple segments based on image characteristics so as to extract the object of interest from it. It is a key step from image...Image segmentation refers to the technique and process of partitioning a digital image into multiple segments based on image characteristics so as to extract the object of interest from it. It is a key step from image processing to image analysis. In the mid-1950s, people began to study image segmentation. For decades, various methods for image segmentation have been proposed. In this paper, traditional image segmentation methods and some new methods appearing in recent years were reviewed. Thresholding segmentation methods, region-based, edge detection-based and segmentation methods based on specific theoretical tools were introduced in detail.展开更多
文摘针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割,形成多个超像素区域;然后计算并提取影像各个区域的纹理特征信息熵值、光谱特征与邻域均值差分归一化值,分别进行同质性和异质性的有效衡量;并构建评价函数获取最优分割尺度,对这些超像素区域进行初步合并,得到影像的粗分割结果;最后结合各地物的边界权重信息,从全局角度用R-cut的方法对粗分割结果进一步合并,完成对影像的精细分割,生成最终的分割结果。实验选取5个不同场景的高分辨率遥感影像,采用定性和定量两种方法对比分析本文方法与传统R-cut边缘检测分割、Spectral-Rcut边缘检测分割和Textured-Rcut边缘检测分割方法。实验结果表明,MSR-cut边缘检测分割方法能够有效提高分割精度,增强噪声鲁棒性,可取得较好的分割视觉效果。
文摘Image segmentation refers to the technique and process of partitioning a digital image into multiple segments based on image characteristics so as to extract the object of interest from it. It is a key step from image processing to image analysis. In the mid-1950s, people began to study image segmentation. For decades, various methods for image segmentation have been proposed. In this paper, traditional image segmentation methods and some new methods appearing in recent years were reviewed. Thresholding segmentation methods, region-based, edge detection-based and segmentation methods based on specific theoretical tools were introduced in detail.