期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
矿井突水水源识别的RS-LSSVM模型 被引量:11
1
作者 邵良杉 李印超 徐波 《安全与环境学报》 CAS CSCD 北大核心 2017年第5期1730-1734,共5页
为了对矿井突水水源进行准确、高效的判别,综合考虑水化学特征,选取Ca^(2+),Mg^(2+),K^++Na^+,HCO-3,SO2-4,Cl^-和总硬度7个指标的质量浓度(mg/L)作为矿井突水水源的最初判别指标。利用粗糙集(RS)理论的属性约简来筛选水化学特征指标,... 为了对矿井突水水源进行准确、高效的判别,综合考虑水化学特征,选取Ca^(2+),Mg^(2+),K^++Na^+,HCO-3,SO2-4,Cl^-和总硬度7个指标的质量浓度(mg/L)作为矿井突水水源的最初判别指标。利用粗糙集(RS)理论的属性约简来筛选水化学特征指标,用以作为水源识别的核心判别指标,建立基于RS的矿井突水水源识别的最小二乘支持向量机(LSSVM)模型。选用约简处理后的13组煤矿数据对模型进行训练,再用训练好的模型对另外12组突水数据进行水源判别,并与未进行属性约简的LSSVM模型及Fisher判别分析法、随机森林方法进行对比。结果表明,利用属性约简方法可以很好地排除原始数据中的冗余信息干扰,因而能有效判别矿井突水水源,使矿井突水水源模型的误判率降低至0;而且指标约简过程可以降低LSSVM运算的复杂度,也能够提高判别效率。 展开更多
关键词 安全工程 矿井突水 水源识别 粗糙集(RS)理论 最小二乘支持向量机(LSSVM) 属性约简
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部