The dynamic response of an icosahedral Al-Pd Mn quasicrystal with a Griffith crack to impact loading is investigated in this paper. The elastohydrodynamic model for the wave propagation and diffusion together with the...The dynamic response of an icosahedral Al-Pd Mn quasicrystal with a Griffith crack to impact loading is investigated in this paper. The elastohydrodynamic model for the wave propagation and diffusion together with their interaction is adopted. Numerical results of stress, displacement and dynamic stress intensity factors are obtained by using the finite difference method. The effects of wave propagation, diffusion and phonon-phason coupling on the quasicrystal in the dynamic process are discussed in detail, where the phason dynamics is explored particularly.展开更多
The complex variable method for the plane elasticity theory of icosahedral quasicrystals is developed. Based on the general solution obtained previously, complex representations of stress and displacement components o...The complex variable method for the plane elasticity theory of icosahedral quasicrystals is developed. Based on the general solution obtained previously, complex representations of stress and displacement components of phonon and phason fields in the quasicrystals are given. With the help of conformal transformation, an analytic solution for the elliptic notch problem of the material is presented. The solution of the Griffith crack problem can be observed as a special case of the results. The stress intensity factor and energy release rate of the crack are also obtained.展开更多
The complex variable method for solving the two-dimensional thermal stress problem of icosahedral quasicrystals is stated. The closed-form solutions for icosahedral quasicrystals containing an elliptical hole subjecte...The complex variable method for solving the two-dimensional thermal stress problem of icosahedral quasicrystals is stated. The closed-form solutions for icosahedral quasicrystals containing an elliptical hole subjected to a remote uniform heat flow are obtained. When the hole degenerates into a crack, the explicit solutions for the stress intensity factors is presented.展开更多
Icosahedral quasicrystals are the most important and thermodynamically stable in all about 200 kinds of quasicrystals currently observed. Beyond the scope of classical elasticity, apart from a phonon displacement fiel...Icosahedral quasicrystals are the most important and thermodynamically stable in all about 200 kinds of quasicrystals currently observed. Beyond the scope of classical elasticity, apart from a phonon displacement field, there is a phason displacement field in the elasticity of the quasicrystal, which induces an important effect on the mechanical properties of the material and makes an analytical solution difficult to obtain. In this paper, a finite element algorithm for the static elasticity of icosahedral quasicrystals is developed by transforming the elastic boundary value problem of the icosahedral quasicrystals into an equivalent variational problem. Analytical and numerical solutions for an icosahedral A1-Pd-Mn quasicrystal cuboid subjected to a uniaxial tension with different phonon-phason coupling parameters are given to verify the validity of the numerical approach. A comparison between the analytical and numerical solutions of the specimen demonstrates the accuracy and efficiency of the present algorithm. Finally, in order to reveal the fracture behavior of the icosahedral A1-Pd-Mn quasicrystal, a cracked specimen with a finite size of matter is investigated, both with and without phonon-phason coupling. Meanwhile, the geometry factors are calculated, including the stress intensity factor and the crack opening displacement for the finite-size specimen. Computational results reveal the importance of pbonon-phason coupling effect on the icosahedral A1-Pd-Mn quasicrystal. Furthermore, the finite element procedure can be used to solve more complicated boundary value problems.展开更多
This structural study of quasicrystals is based on extremely dense icosahedral unit cells that are systematically and consistently measured for the first time. The structure and pattern indexation are 3-dimensional. A...This structural study of quasicrystals is based on extremely dense icosahedral unit cells that are systematically and consistently measured for the first time. The structure and pattern indexation are 3-dimensional. A formula is given for scattering from atoms in hierarchic arrangement and geometric series. The Quasi-Bragg law is a new law in physics, with possible applications beyond crystallography. The structure is compared with previous, unsuccessful, and contradictory, attempts at analysis.展开更多
Quasicrystals are material with perfect long-range order, but with no three-dimensional translation periodicity. They are typically binary and ternary metallic alloys. Quasicrystals have characteristic physical proper...Quasicrystals are material with perfect long-range order, but with no three-dimensional translation periodicity. They are typically binary and ternary metallic alloys. Quasicrystals have characteristic physical properties. Some resemble those of periodic crystals while others have similar properties to amorphous alloys. Many of their mechanical physical prop- erties are quite unusual by the standards of common metals. The peculiar physical properties of quasicrystals certainly give rise to the hope that they may become of some practical importance in the future. Some of these properties are surface related. This provides the main motivation for surface scientists to study this material. In this paper;quasicrystals, types of them, physical properties, surface science and potential applications of them have been discussed.展开更多
An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg;Zn;Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) ...An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg;Zn;Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) on the cast microstructure following homogenization. The alloy exhibited excellent superplasticity at low temperatures(tensile elongations of 455% and 1021% 473 K-10;s;and 523 K-10;s;,respectively). Compared with UFG Mg-9.25Zn-1.66 Y alloy(ZW92) with a lower volume fraction of I-phase particles(4.1%), which was prepared using the same processing routes, the UFG ZW132 alloy exhibited a higher thermal stability of grain size. Rapid grain coarsening, however, occurred at temperatures beyond523 K, leading to a loss of superplasticity. The high-temperature deformation behavior of the HRDSRprocessed ZW132 alloy could be well described assuming that the mechanisms of grain boundary sliding and dislocation climb creep competed with each other and considering that the grain-size was largely increased by accelerated grain growth at the temperatures beyond 523 K.展开更多
Based on the displacement potential functions, the elastic analysis of a mode Ⅱ crack in an icosahedral quasicrystal is performed by using the Fourier transform and dual integral equation theory. By the solution, the...Based on the displacement potential functions, the elastic analysis of a mode Ⅱ crack in an icosahedral quasicrystal is performed by using the Fourier transform and dual integral equation theory. By the solution, the analytic expressions for the displacement field and stress field are obtained. The asymptotic behaviours of the phonon and phason stress fields around the crack tip indicate that the stresses near the crack tip exhibit a square root singularity. The most important physical quantities of fracture theory, crack stress intensity factor and energy release rate, are evaluated in an explicit version.展开更多
A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the pol...A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.展开更多
An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn- Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magne...An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn- Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magnesium alloy. In this article, phase constituents and the effect of reciprocating extrusion on microstructures and properties of the as-cast Mg-6.4Zn-1.1 Y alloy are analyzed. The microstructure of the as-cast Mg-6.4Zn-1.1 Y alloy consists of the α-Mg solid solution, icosahedral Mg3YZn6 quasicrystal, and Mg3 Y2Zn3 and MgZn2 compounds. After the alloy was reciprocatingly extruded for four passes, grains were refined, Mg3 Y2 Zn3 and MgZn2 phases dissolved into the matrix, whereas, Mg3 YZn6 precipitated and distributed uniformly. The alloy possesses the best performance at this state; the tensile strength, yield strength, and elongation are 323.4 MPa, 258.2 MPa, and 19.7%, respectively. In comparison with that of the as-cast alloy, the tensile strength, yield strength, and elongation of the reciprocatingly extruded alloy increase by 258.3%, 397.5%, and 18 times, respectively. It is concluded that reciprocating extrusion can substantially improve the properties of the as-cast Mg-6.4Zn-1.1 Y alloy, particularly for elongation. The high performance of the Mg-6.4Zn-1.1 Y alloy after reciprocating extrusion can be attributed to dispersion strengthening and grain-refined microstructures.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 10672022 and 10372016)
文摘The dynamic response of an icosahedral Al-Pd Mn quasicrystal with a Griffith crack to impact loading is investigated in this paper. The elastohydrodynamic model for the wave propagation and diffusion together with their interaction is adopted. Numerical results of stress, displacement and dynamic stress intensity factors are obtained by using the finite difference method. The effects of wave propagation, diffusion and phonon-phason coupling on the quasicrystal in the dynamic process are discussed in detail, where the phason dynamics is explored particularly.
基金the National Natural Science Foundation of China (Grant Nos. 10372016 and 10761005)the Natural Science Foundation of Inner Mongolia of China (Grant No. 200607010104)the Natural Science Foundation of Inner Mongolia Normal University (Grant No. QN07034)
文摘The complex variable method for the plane elasticity theory of icosahedral quasicrystals is developed. Based on the general solution obtained previously, complex representations of stress and displacement components of phonon and phason fields in the quasicrystals are given. With the help of conformal transformation, an analytic solution for the elliptic notch problem of the material is presented. The solution of the Griffith crack problem can be observed as a special case of the results. The stress intensity factor and energy release rate of the crack are also obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072104,11272053,and 11262017)the Key Project of Chinese Ministry of Education(Grant No.212029)+3 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2013MS0114)the Natural Science Foundation of Inner Mongolia Department of Public Education,China(Grant No.NJZZ13037)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region,China(Grant No.NJYT-13-B07)the Program for Higher-Level Talents of Inner Mongolia University,China(Grant No.125125)
文摘The complex variable method for solving the two-dimensional thermal stress problem of icosahedral quasicrystals is stated. The closed-form solutions for icosahedral quasicrystals containing an elliptical hole subjected to a remote uniform heat flow are obtained. When the hole degenerates into a crack, the explicit solutions for the stress intensity factors is presented.
基金Project supported by the National Natural Science Foundation of China(Grant No.11172319)the Scientific Fund of Chinese Universities(Grant Nos.2011JS046 and 2013BH008)+1 种基金the Opening Fund of State Key Laboratory of Nonlinear Mechanics,Program for New Century Excellent Talents in University,China(Grant No.NCET-13-0552)the National Science Foundation for Post-doctoral Scientists of China(Grant No.2013M541086)
文摘Icosahedral quasicrystals are the most important and thermodynamically stable in all about 200 kinds of quasicrystals currently observed. Beyond the scope of classical elasticity, apart from a phonon displacement field, there is a phason displacement field in the elasticity of the quasicrystal, which induces an important effect on the mechanical properties of the material and makes an analytical solution difficult to obtain. In this paper, a finite element algorithm for the static elasticity of icosahedral quasicrystals is developed by transforming the elastic boundary value problem of the icosahedral quasicrystals into an equivalent variational problem. Analytical and numerical solutions for an icosahedral A1-Pd-Mn quasicrystal cuboid subjected to a uniaxial tension with different phonon-phason coupling parameters are given to verify the validity of the numerical approach. A comparison between the analytical and numerical solutions of the specimen demonstrates the accuracy and efficiency of the present algorithm. Finally, in order to reveal the fracture behavior of the icosahedral A1-Pd-Mn quasicrystal, a cracked specimen with a finite size of matter is investigated, both with and without phonon-phason coupling. Meanwhile, the geometry factors are calculated, including the stress intensity factor and the crack opening displacement for the finite-size specimen. Computational results reveal the importance of pbonon-phason coupling effect on the icosahedral A1-Pd-Mn quasicrystal. Furthermore, the finite element procedure can be used to solve more complicated boundary value problems.
文摘This structural study of quasicrystals is based on extremely dense icosahedral unit cells that are systematically and consistently measured for the first time. The structure and pattern indexation are 3-dimensional. A formula is given for scattering from atoms in hierarchic arrangement and geometric series. The Quasi-Bragg law is a new law in physics, with possible applications beyond crystallography. The structure is compared with previous, unsuccessful, and contradictory, attempts at analysis.
文摘Quasicrystals are material with perfect long-range order, but with no three-dimensional translation periodicity. They are typically binary and ternary metallic alloys. Quasicrystals have characteristic physical properties. Some resemble those of periodic crystals while others have similar properties to amorphous alloys. Many of their mechanical physical prop- erties are quite unusual by the standards of common metals. The peculiar physical properties of quasicrystals certainly give rise to the hope that they may become of some practical importance in the future. Some of these properties are surface related. This provides the main motivation for surface scientists to study this material. In this paper;quasicrystals, types of them, physical properties, surface science and potential applications of them have been discussed.
基金supported financially by the Mid-Career Researcher Program through the National Research Foundation of Korea(2016) funded by the Ministry of Education, Science and Technology (2016R1A2B4015481)
文摘An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg;Zn;Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) on the cast microstructure following homogenization. The alloy exhibited excellent superplasticity at low temperatures(tensile elongations of 455% and 1021% 473 K-10;s;and 523 K-10;s;,respectively). Compared with UFG Mg-9.25Zn-1.66 Y alloy(ZW92) with a lower volume fraction of I-phase particles(4.1%), which was prepared using the same processing routes, the UFG ZW132 alloy exhibited a higher thermal stability of grain size. Rapid grain coarsening, however, occurred at temperatures beyond523 K, leading to a loss of superplasticity. The high-temperature deformation behavior of the HRDSRprocessed ZW132 alloy could be well described assuming that the mechanisms of grain boundary sliding and dislocation climb creep competed with each other and considering that the grain-size was largely increased by accelerated grain growth at the temperatures beyond 523 K.
基金Project supported by the National Natural Science Foundation of China (Grant No 10372016).
文摘Based on the displacement potential functions, the elastic analysis of a mode Ⅱ crack in an icosahedral quasicrystal is performed by using the Fourier transform and dual integral equation theory. By the solution, the analytic expressions for the displacement field and stress field are obtained. The asymptotic behaviours of the phonon and phason stress fields around the crack tip indicate that the stresses near the crack tip exhibit a square root singularity. The most important physical quantities of fracture theory, crack stress intensity factor and energy release rate, are evaluated in an explicit version.
基金the National Natural Science Foundation of China (No. 50571081)the Aviation Foundation of China (No. 04G53024).
文摘A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.
基金supported by the National Natural Science Foundation of China(Grant No.50271054)Shaanxi Provincial Nature Scientific Research Project(Grant No.2003E1 11)SRF for ROCS,SEM(101-220325).
文摘An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn- Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magnesium alloy. In this article, phase constituents and the effect of reciprocating extrusion on microstructures and properties of the as-cast Mg-6.4Zn-1.1 Y alloy are analyzed. The microstructure of the as-cast Mg-6.4Zn-1.1 Y alloy consists of the α-Mg solid solution, icosahedral Mg3YZn6 quasicrystal, and Mg3 Y2Zn3 and MgZn2 compounds. After the alloy was reciprocatingly extruded for four passes, grains were refined, Mg3 Y2 Zn3 and MgZn2 phases dissolved into the matrix, whereas, Mg3 YZn6 precipitated and distributed uniformly. The alloy possesses the best performance at this state; the tensile strength, yield strength, and elongation are 323.4 MPa, 258.2 MPa, and 19.7%, respectively. In comparison with that of the as-cast alloy, the tensile strength, yield strength, and elongation of the reciprocatingly extruded alloy increase by 258.3%, 397.5%, and 18 times, respectively. It is concluded that reciprocating extrusion can substantially improve the properties of the as-cast Mg-6.4Zn-1.1 Y alloy, particularly for elongation. The high performance of the Mg-6.4Zn-1.1 Y alloy after reciprocating extrusion can be attributed to dispersion strengthening and grain-refined microstructures.