通过显微组织观察、织构分析和拉伸测试等手段研究挤压比对双相Mg-8Li-6Zn-2Gd合金显微组织、织构和力学性能的影响。结果表明:均匀化态Mg-8Li-6Zn-2Gd合金中含有α-Mg、β-Li、Mg Li Zn、I相和W相。经热挤压后,共晶I相被碾碎成细小颗粒...通过显微组织观察、织构分析和拉伸测试等手段研究挤压比对双相Mg-8Li-6Zn-2Gd合金显微组织、织构和力学性能的影响。结果表明:均匀化态Mg-8Li-6Zn-2Gd合金中含有α-Mg、β-Li、Mg Li Zn、I相和W相。经热挤压后,共晶I相被碾碎成细小颗粒状,而W相保持原有块状形状。合金中α-Mg基体和β-Li基体在热挤压过程中均发生了动态再结晶(DRX),且晶粒随着挤压比的增加逐渐细化。经热挤压后,α-Mg基体的基面织构弱化和柱面织构增强是由于非基面滑移的激活;β-Li基体中形成明显的α和γ纤维织构主要与动态回复与动态再结晶相关。热挤压同时提升Mg-8Li-6Zn-2Gd合金的抗拉强度和伸长率,并在挤压比为16:1时获得最佳的综合力学性能。展开更多
Phase equilibrium relations of the Mg-Zn-Y system in the low-Y side at 400℃were investigated by alloy-equilibrated method,combined with thermal analysis.The results show that there is a liquid phase which could be in...Phase equilibrium relations of the Mg-Zn-Y system in the low-Y side at 400℃were investigated by alloy-equilibrated method,combined with thermal analysis.The results show that there is a liquid phase which could be in equilibrium with an a-Mg solid solution and an icosahedral quasicrystal I phase in the low-Y side of the Mg-Zn-Y system at 400℃.The liquid phase region originates from the binary Mg-Zn system and extends to 0.4 at%Y in the Mg-Zn-Y system.Besides,the hexagonal structure H phase,fee W phase and LPSO phase(X phase)are in equilibrium with a-Mg.With Y/Zn(atomic ratio,the same as follows)increasing,there exist four three-phase regions consisting of I+liquid+α-Mg,I+H+α-Mg,H+W+α-Mg and W+X+α-Mg,respectively,in the low-Y side of the isothermal section at 400℃.The twophase region a-Mg+I phase exists between I+H+aMg and I+liquid+a-Mg.In this two-phase region,the Y/Zn ratio is in the range of 0.14-0.17;and a three-phase region of a-Mg+I phase+H phase appears when Y/Zn ratio comes up to 0.17-0.27.Not I but W phase is in equilibrium with a-Mg,when Y/Zn ratio>0.27.The system is in liquid-state phase equilibrium,when Y/Zn ratio<0.14.展开更多
A model on the coexisting phase of quasicrystal-crystal is proposed, with which we concretely investigate the inter- face effects for coexisting phases of one-dimensional orthorhombic quasicrystal-isotropic crystal an...A model on the coexisting phase of quasicrystal-crystal is proposed, with which we concretely investigate the inter- face effects for coexisting phases of one-dimensional orthorhombic quasicrystal-isotropic crystal and three-dimensional icosahedral quasierystal-cubic crystal. The phason strain fields which play an important role in some processes are determined. Some factors affecting the strain fields, e.g., the material constants of phonon, phason, phonon-phason coupling of the quasicrystal and the elastic modulus and the size of the crystal are also explored.展开更多
Mg70.8Zn28Nd1.2(mole fraction) alloy containing icosahedral quasicrystal phase (I-phase) was prepared under conventional metal casting conditions. The microstructure, phase constitution and phase structure of the ...Mg70.8Zn28Nd1.2(mole fraction) alloy containing icosahedral quasicrystal phase (I-phase) was prepared under conventional metal casting conditions. The microstructure, phase constitution and phase structure of the alloy were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM). The resuits showed that the spherical phase in Mg70.8Zn28Nd1.2 alloy was a simple icosahedral quasicrystal with stoichiometric composition of Mg40Zn55Nd5 and quasi-lattice of 0.525 nm. In this research, the as-cast microstructure of Mg70.8Zn28Nd1.2 alloy mainly consisted of Mg40Zn55Nd5 icosahedral quasicrystal phase and Mg7Zn3 columnar crystal matrix. In the growing process of Mg40Zn55Nd5 icosahedral quasicrystal phase, the growth morphology mainly depended on interface energy, adsorption effect of Nd and cooling rate.展开更多
The microstructure of the as-cast Mg 44 Zn 44 Gd 12 alloy was investigated by using X-ray diffraction(XRD),differentical scanning(DSC),scanning electron microscopy(SEM) and a detailed transmission electron micro...The microstructure of the as-cast Mg 44 Zn 44 Gd 12 alloy was investigated by using X-ray diffraction(XRD),differentical scanning(DSC),scanning electron microscopy(SEM) and a detailed transmission electron microscope.The XRD,DSC and SEM results indicated that the as-cast Mg 44 Zn 44 Gd 12 alloy were mainly composed of three types of phases:the primary solidification phase,the dendritic phase and the eutectic phase.The primary solidification phase had an icosahedral structure.The dendritic phase was the W-phase,and eutectic structure phase was the Mg 7 Zn 3 phase.Microstructures of icosahedral phase(I-phase),W-phase and Mg 7 Zn 3 phase in Mg 44 Zn 44 Gd 12 alloy were investigated.The results indicated that the I-phase in Mg 44 Zn 44 Gd 12 alloy was a face-centered icosahedral quasicrystal with stoichiometric composition of Mg 42 Zn 50 Gd 8 which had an excellent thermal stability up to 420 °C.The solid solution of the Gd gradually decreased during solidification,which played an important role in activating the formation of Mg 7 Zn 3 phase and W-phase from icosahedral phases.展开更多
基金financial supports from the Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials,Ministry of Education,China (Nos. GFST2021KF04, GFST2021KF09)the Natural Science Research Project of Anhui Educational Committee,China (Nos. KJ2021A0394, KJ2021A0395)Anhui Provincial Natural Science Foundation,China (No. 2208085QE124)。
文摘通过显微组织观察、织构分析和拉伸测试等手段研究挤压比对双相Mg-8Li-6Zn-2Gd合金显微组织、织构和力学性能的影响。结果表明:均匀化态Mg-8Li-6Zn-2Gd合金中含有α-Mg、β-Li、Mg Li Zn、I相和W相。经热挤压后,共晶I相被碾碎成细小颗粒状,而W相保持原有块状形状。合金中α-Mg基体和β-Li基体在热挤压过程中均发生了动态再结晶(DRX),且晶粒随着挤压比的增加逐渐细化。经热挤压后,α-Mg基体的基面织构弱化和柱面织构增强是由于非基面滑移的激活;β-Li基体中形成明显的α和γ纤维织构主要与动态回复与动态再结晶相关。热挤压同时提升Mg-8Li-6Zn-2Gd合金的抗拉强度和伸长率,并在挤压比为16:1时获得最佳的综合力学性能。
基金financially supported by the National Natural Science Foundation of China(Nos.51271053 and 5137104)the National Key Research and Development Program of China(No.2016YFB0701202).
文摘Phase equilibrium relations of the Mg-Zn-Y system in the low-Y side at 400℃were investigated by alloy-equilibrated method,combined with thermal analysis.The results show that there is a liquid phase which could be in equilibrium with an a-Mg solid solution and an icosahedral quasicrystal I phase in the low-Y side of the Mg-Zn-Y system at 400℃.The liquid phase region originates from the binary Mg-Zn system and extends to 0.4 at%Y in the Mg-Zn-Y system.Besides,the hexagonal structure H phase,fee W phase and LPSO phase(X phase)are in equilibrium with a-Mg.With Y/Zn(atomic ratio,the same as follows)increasing,there exist four three-phase regions consisting of I+liquid+α-Mg,I+H+α-Mg,H+W+α-Mg and W+X+α-Mg,respectively,in the low-Y side of the isothermal section at 400℃.The twophase region a-Mg+I phase exists between I+H+aMg and I+liquid+a-Mg.In this two-phase region,the Y/Zn ratio is in the range of 0.14-0.17;and a three-phase region of a-Mg+I phase+H phase appears when Y/Zn ratio comes up to 0.17-0.27.Not I but W phase is in equilibrium with a-Mg,when Y/Zn ratio>0.27.The system is in liquid-state phase equilibrium,when Y/Zn ratio<0.14.
基金Project supported by the National Natural Science Foundation of China (Grant No.10672022)
文摘A model on the coexisting phase of quasicrystal-crystal is proposed, with which we concretely investigate the inter- face effects for coexisting phases of one-dimensional orthorhombic quasicrystal-isotropic crystal and three-dimensional icosahedral quasierystal-cubic crystal. The phason strain fields which play an important role in some processes are determined. Some factors affecting the strain fields, e.g., the material constants of phonon, phason, phonon-phason coupling of the quasicrystal and the elastic modulus and the size of the crystal are also explored.
基金supported by National Natural Science Foundation of China (50571073)Natural Science Foundation of Shanxi Province (2009011028-3,2007011067,20051052)High-School Student Project of Taiyuan City (07010713)
文摘Mg70.8Zn28Nd1.2(mole fraction) alloy containing icosahedral quasicrystal phase (I-phase) was prepared under conventional metal casting conditions. The microstructure, phase constitution and phase structure of the alloy were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM). The resuits showed that the spherical phase in Mg70.8Zn28Nd1.2 alloy was a simple icosahedral quasicrystal with stoichiometric composition of Mg40Zn55Nd5 and quasi-lattice of 0.525 nm. In this research, the as-cast microstructure of Mg70.8Zn28Nd1.2 alloy mainly consisted of Mg40Zn55Nd5 icosahedral quasicrystal phase and Mg7Zn3 columnar crystal matrix. In the growing process of Mg40Zn55Nd5 icosahedral quasicrystal phase, the growth morphology mainly depended on interface energy, adsorption effect of Nd and cooling rate.
基金supported by National Key Basic Research Program (2007CB613706)the National Science and Technology Supporting Plan of the Twelfth Five-year (2011BAE22B04-2)the project of Innovation Project for Talents (PHR200906101)
文摘The microstructure of the as-cast Mg 44 Zn 44 Gd 12 alloy was investigated by using X-ray diffraction(XRD),differentical scanning(DSC),scanning electron microscopy(SEM) and a detailed transmission electron microscope.The XRD,DSC and SEM results indicated that the as-cast Mg 44 Zn 44 Gd 12 alloy were mainly composed of three types of phases:the primary solidification phase,the dendritic phase and the eutectic phase.The primary solidification phase had an icosahedral structure.The dendritic phase was the W-phase,and eutectic structure phase was the Mg 7 Zn 3 phase.Microstructures of icosahedral phase(I-phase),W-phase and Mg 7 Zn 3 phase in Mg 44 Zn 44 Gd 12 alloy were investigated.The results indicated that the I-phase in Mg 44 Zn 44 Gd 12 alloy was a face-centered icosahedral quasicrystal with stoichiometric composition of Mg 42 Zn 50 Gd 8 which had an excellent thermal stability up to 420 °C.The solid solution of the Gd gradually decreased during solidification,which played an important role in activating the formation of Mg 7 Zn 3 phase and W-phase from icosahedral phases.