Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as...Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as collision and friction,which affects the execution of helicopter tasks.To investigate the influence of impact position on the damage form and dynamic response of blades during ice impact,a dynamic model by finite element-smooth particle fluid dynamic coupling method is created.The ice impact damage experiment of the TC4 plate based on the air gun experimental platform was carried out to verify the reliability of the simulation model.The damage of compressor blades impacted by ice from different positions under static and design speed of 45000 r/min is analyzed.The research results indicate that under static conditions,the damage caused by ice impact from the leading edge blade tip to the leading edge blade root first increases and then decreases,with the maximum damage occurring at the 66.7%blade height position on the leading edge.At the design speed,the closer the impact locations are to the leaf tip,the greater the damage is,and the plastic damage,equivalent stress,and kinetic energy loss of the ice impact are lower than the blade static condition.The research conclusion can provide theoretical reference and data support for the design of structural strength and protection of compressor blades in turboshaft engines.展开更多
In the present work,a state-based peridynamics with adaptive particle refinement is proposed to simulate water ice crater formation due to impact loads.A modified Drucker-Prager constitutive model was adopted to model...In the present work,a state-based peridynamics with adaptive particle refinement is proposed to simulate water ice crater formation due to impact loads.A modified Drucker-Prager constitutive model was adopted to model ice and was implemented in the state-based peridynamic equations to analyze the elastic-plastic deformation of ice.In simulations,we use the fracture toughness failure criterion in peridynamics to simulate the quasi-brittle failure of ice.An adaptive particle refinement method in peridynamics was proposed to improve computational efficiency.The results obtained using the peridynamic model were compared with the experiments in previous literatures.It was found that the peridynamic simulation results and the experiments matched well except for some minor differences discussed,and the state-based peridynamic model has shown the specific predictive capacity to capture the detailed crater features of the ice.展开更多
The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ic...The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ice material model is critical.However,ice is not a common structural material and exhibits an extremely complex material behavior.The material models of ice reported so far are not able to accurately simulate the ice behavior at high strain rates.This study proposes a novel high-precision macro-phenomenological elastic fracture model based on the brittle behavior of ice at high strain rates.The developed model has been compared with five reported models by using the smoothed particle hydrodynamics method so as to simulate the ice-impact process with respect to the impact speeds and ice shapes.The important metrics and phenomena(impact force history,deformation and fragmentation of the ice projectile and deflection of the target)were compared with the experimental data reported in the literature.The findings obtained from the developed model are observed to be most consistent with the experimental data,which demonstrates that the model represents the basic physics and phenomena governing the ice impact at high strain rates.The developed model includes a relatively fewer number of material parameters.Further,the used parameters have a clear physical meaning and can be directly obtained through experiments.Moreover,no adjustment of any material parameter is needed,and the consumption duration is also acceptable.These advantages indicate that the developed model is suitable for simulating the iceimpact process and can be applied for the anti-ice impact design in aviation.展开更多
Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic resp...Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic response and damage behavior of hybrid corrugated sandwich structures subjected to high velocity hail ice impact.The impact and breaking behavior of hail are described using the FE-smoothed particle hydrodynamics(FE-SPH)method.A rate-dependent progressive damage model is employed to capture the intra-laminar damage response;cohesive element and surface-based cohesive contact are implemented to predict the inter-laminar delamination and sheet/core debonding phenomena respectively.The transient processes of sandwich structure under different hail ice impact conditions are analyzed.Comparative analysis is conducted to address the influences of core shape and impact position on the impact performance of sandwich structures and the corresponding energy absorption characteristics are also revealed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52175091 and 52075165)the National Natural Science Foundation of Hunan Province(Grant No.2023JJ30247)+1 种基金the Key Research and Development Program of Hunan Province(Grant No.2022GK2023)the AECC Independent Innovation Special Foundation(Grant No.KY-1003-2021-0019).
文摘Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as collision and friction,which affects the execution of helicopter tasks.To investigate the influence of impact position on the damage form and dynamic response of blades during ice impact,a dynamic model by finite element-smooth particle fluid dynamic coupling method is created.The ice impact damage experiment of the TC4 plate based on the air gun experimental platform was carried out to verify the reliability of the simulation model.The damage of compressor blades impacted by ice from different positions under static and design speed of 45000 r/min is analyzed.The research results indicate that under static conditions,the damage caused by ice impact from the leading edge blade tip to the leading edge blade root first increases and then decreases,with the maximum damage occurring at the 66.7%blade height position on the leading edge.At the design speed,the closer the impact locations are to the leaf tip,the greater the damage is,and the plastic damage,equivalent stress,and kinetic energy loss of the ice impact are lower than the blade static condition.The research conclusion can provide theoretical reference and data support for the design of structural strength and protection of compressor blades in turboshaft engines.
文摘In the present work,a state-based peridynamics with adaptive particle refinement is proposed to simulate water ice crater formation due to impact loads.A modified Drucker-Prager constitutive model was adopted to model ice and was implemented in the state-based peridynamic equations to analyze the elastic-plastic deformation of ice.In simulations,we use the fracture toughness failure criterion in peridynamics to simulate the quasi-brittle failure of ice.An adaptive particle refinement method in peridynamics was proposed to improve computational efficiency.The results obtained using the peridynamic model were compared with the experiments in previous literatures.It was found that the peridynamic simulation results and the experiments matched well except for some minor differences discussed,and the state-based peridynamic model has shown the specific predictive capacity to capture the detailed crater features of the ice.
基金supported by the National Science and Technology Major Project,China(No.J2019-I-0013-0013)。
文摘The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ice material model is critical.However,ice is not a common structural material and exhibits an extremely complex material behavior.The material models of ice reported so far are not able to accurately simulate the ice behavior at high strain rates.This study proposes a novel high-precision macro-phenomenological elastic fracture model based on the brittle behavior of ice at high strain rates.The developed model has been compared with five reported models by using the smoothed particle hydrodynamics method so as to simulate the ice-impact process with respect to the impact speeds and ice shapes.The important metrics and phenomena(impact force history,deformation and fragmentation of the ice projectile and deflection of the target)were compared with the experimental data reported in the literature.The findings obtained from the developed model are observed to be most consistent with the experimental data,which demonstrates that the model represents the basic physics and phenomena governing the ice impact at high strain rates.The developed model includes a relatively fewer number of material parameters.Further,the used parameters have a clear physical meaning and can be directly obtained through experiments.Moreover,no adjustment of any material parameter is needed,and the consumption duration is also acceptable.These advantages indicate that the developed model is suitable for simulating the iceimpact process and can be applied for the anti-ice impact design in aviation.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20180855)Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Grant No.MCMS-E-0219Y01)Research and Practice Innovation Program of postgraduates in Jiangsu Province(Grant No.KYCX20-3076)。
文摘Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic response and damage behavior of hybrid corrugated sandwich structures subjected to high velocity hail ice impact.The impact and breaking behavior of hail are described using the FE-smoothed particle hydrodynamics(FE-SPH)method.A rate-dependent progressive damage model is employed to capture the intra-laminar damage response;cohesive element and surface-based cohesive contact are implemented to predict the inter-laminar delamination and sheet/core debonding phenomena respectively.The transient processes of sandwich structure under different hail ice impact conditions are analyzed.Comparative analysis is conducted to address the influences of core shape and impact position on the impact performance of sandwich structures and the corresponding energy absorption characteristics are also revealed.