The mechanism of adhesive friction between viscoelastic materials is a key question.In this study,the friction process of the adhesive interface between a friction lining and a wire rope is dynamically observed in rea...The mechanism of adhesive friction between viscoelastic materials is a key question.In this study,the friction process of the adhesive interface between a friction lining and a wire rope is dynamically observed in real time to analyze the adhesion hysteresis friction intuitively and quantitatively.The adhesion is determined by the state of motion,while the relative displacement of the wire rope and lining is used to find the magnitude of the adhesive friction.The hysteresis friction is reflected by the internal deformation of the lining.The magnitude of the hysteresis friction is determined by the displacement difference(Ax)in the sliding direction of two marked points at different distances from the contact surface.The results show that the adhesion friction is proportional to the loss modulus and the hysteresis friction is proportional to the ratio of the loss modulus to the square of the storage modulus(E"/(E'^(2))).The frictional vibration first decreases and then increases with the increase in pressure.The K25 lining has the highest adhesion hysteresis friction and minimal frictional vibration.The result provides a simple and intuitive method for research into the friction transmission and vibration of viscoelastic materials.展开更多
This paper adopts free interface modal synthesis method to divide the whole automobile model into many sub-structures and establish dynamical equations of automobile nonlinear coupled system. The Monte Carlo method is...This paper adopts free interface modal synthesis method to divide the whole automobile model into many sub-structures and establish dynamical equations of automobile nonlinear coupled system. The Monte Carlo method is used to simulate the spectrum of the random excitation of the road and the engine. Based on the automobile dynamical equations, a simulation is carried out within time domain and frequency domain on the characteristic of vibration due to the excitation of automobile wheel and the engine. The results are verified by bench experiment to make the research more practicable. In order to do research of rubber hysteresis’ influence on automobile dynamic property, Poincare diagrams and amplitude frequency characteristic curves were drawn with automobile linear and nonlinear models. The results show that the nonlinear dynamical model concerning rubber hysteresis not only can improve the simulation accuracy, but also is beneficial to find some complex nonlinear dynamical behaviors of vehicles.展开更多
基金supported by the joint Ph.D.program of"double first rate"construction disciplines of China University of Mining and Technology(CUMT).
文摘The mechanism of adhesive friction between viscoelastic materials is a key question.In this study,the friction process of the adhesive interface between a friction lining and a wire rope is dynamically observed in real time to analyze the adhesion hysteresis friction intuitively and quantitatively.The adhesion is determined by the state of motion,while the relative displacement of the wire rope and lining is used to find the magnitude of the adhesive friction.The hysteresis friction is reflected by the internal deformation of the lining.The magnitude of the hysteresis friction is determined by the displacement difference(Ax)in the sliding direction of two marked points at different distances from the contact surface.The results show that the adhesion friction is proportional to the loss modulus and the hysteresis friction is proportional to the ratio of the loss modulus to the square of the storage modulus(E"/(E'^(2))).The frictional vibration first decreases and then increases with the increase in pressure.The K25 lining has the highest adhesion hysteresis friction and minimal frictional vibration.The result provides a simple and intuitive method for research into the friction transmission and vibration of viscoelastic materials.
基金supported by the program of National Natural Science of China (No. 51075303)
文摘This paper adopts free interface modal synthesis method to divide the whole automobile model into many sub-structures and establish dynamical equations of automobile nonlinear coupled system. The Monte Carlo method is used to simulate the spectrum of the random excitation of the road and the engine. Based on the automobile dynamical equations, a simulation is carried out within time domain and frequency domain on the characteristic of vibration due to the excitation of automobile wheel and the engine. The results are verified by bench experiment to make the research more practicable. In order to do research of rubber hysteresis’ influence on automobile dynamic property, Poincare diagrams and amplitude frequency characteristic curves were drawn with automobile linear and nonlinear models. The results show that the nonlinear dynamical model concerning rubber hysteresis not only can improve the simulation accuracy, but also is beneficial to find some complex nonlinear dynamical behaviors of vehicles.