采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial le...采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial least squares regression,PLSR)和多元线性回归(Multiple linear regression,MLR)算法建立掺假样品的定量预测模型。为了减少高维共线性问题,提高模型运算效率,分别采用PLS-β系数法、逐步回归法(Stepwise)和连续投影算法(Successive projection algorithm,SPA)筛选最优波长建立优化预测模型。结果表明,基于SPA算法结合MLR建模方法得到的掺假牛肉预测模型,其预测效果最优,校正集决定系数(R2C)和均方根误差(Root mean square error of calibration,RMSEC)分别为0.99和3.23%,验证集的决定系数(R2P)和均方根误差(Root mean square error of prediction)RMSEP分别为0.97和5.31%,预测偏差(Residual predictive deviation,RPD)为6.82。综上,近红外高光谱成像技术结合线性回归算法可以实现对掺假牛肉的快速无损定量检测。展开更多
文摘采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial least squares regression,PLSR)和多元线性回归(Multiple linear regression,MLR)算法建立掺假样品的定量预测模型。为了减少高维共线性问题,提高模型运算效率,分别采用PLS-β系数法、逐步回归法(Stepwise)和连续投影算法(Successive projection algorithm,SPA)筛选最优波长建立优化预测模型。结果表明,基于SPA算法结合MLR建模方法得到的掺假牛肉预测模型,其预测效果最优,校正集决定系数(R2C)和均方根误差(Root mean square error of calibration,RMSEC)分别为0.99和3.23%,验证集的决定系数(R2P)和均方根误差(Root mean square error of prediction)RMSEP分别为0.97和5.31%,预测偏差(Residual predictive deviation,RPD)为6.82。综上,近红外高光谱成像技术结合线性回归算法可以实现对掺假牛肉的快速无损定量检测。