This paper deals with dynamical behaviours in an array composed of two resistive-capacitive-inductive-shunted (RCL-shunted) Josephson junctions (RCLSJJs) and a shunted resistor. Numerical simulations show that per...This paper deals with dynamical behaviours in an array composed of two resistive-capacitive-inductive-shunted (RCL-shunted) Josephson junctions (RCLSJJs) and a shunted resistor. Numerical simulations show that periodic, chaotic and hyperchaotic states can coexist in this array. Moreover, a scheme for controlling hyperchaos in this array is presented by adjusting the external bias current. Numerical results confirm that this scheme can be effectively used to control hyperchaotic states in this array into stable periodic states, and different stable periodic states with different period numbers can be obtained by appropriately choosing the intensity of the external bias current.展开更多
This paper introduces a switched hyperchaotic system that changes its behavior randomly from one subsystem to another via two switch functions, and its characteristics of symmetry, dissipation, equilibrium, bifurcatio...This paper introduces a switched hyperchaotic system that changes its behavior randomly from one subsystem to another via two switch functions, and its characteristics of symmetry, dissipation, equilibrium, bifurcation diagram, basic dynamics have been analyzed. The hardware implementation of the system is based on Field Programmable Gate Array (FPGA). It is shown that the experimental results are identical with numerical simulations, and the chaotic trajectories are much more complex.展开更多
文摘This paper deals with dynamical behaviours in an array composed of two resistive-capacitive-inductive-shunted (RCL-shunted) Josephson junctions (RCLSJJs) and a shunted resistor. Numerical simulations show that periodic, chaotic and hyperchaotic states can coexist in this array. Moreover, a scheme for controlling hyperchaos in this array is presented by adjusting the external bias current. Numerical results confirm that this scheme can be effectively used to control hyperchaotic states in this array into stable periodic states, and different stable periodic states with different period numbers can be obtained by appropriately choosing the intensity of the external bias current.
文摘This paper introduces a switched hyperchaotic system that changes its behavior randomly from one subsystem to another via two switch functions, and its characteristics of symmetry, dissipation, equilibrium, bifurcation diagram, basic dynamics have been analyzed. The hardware implementation of the system is based on Field Programmable Gate Array (FPGA). It is shown that the experimental results are identical with numerical simulations, and the chaotic trajectories are much more complex.