Magnesium(Mg^2+))ion plays important roles in biomineralization of bone,teeth and calcium carbonate skeletons.Herein,chicken eggshells mainly comprising of Mg-calcite nanocrystals(Mg/(Mg+Ca)2.0 mol.%)were used to fabr...Magnesium(Mg^2+))ion plays important roles in biomineralization of bone,teeth and calcium carbonate skeletons.Herein,chicken eggshells mainly comprising of Mg-calcite nanocrystals(Mg/(Mg+Ca)2.0 mol.%)were used to fabricate biphasic calcium phosphate(BCP),a mixture of hydroxyapatite(HA)and p-tricalcium phosphate(p-TCP)nanocrystals,through hydrothermal reactions at 200℃for 24 h.Our results indicated thatβ-TCP nanocrystals formed through the ion-exchange reactions of Mg-calcite,while HA nanocrystals were mainly produced by dissolution-reprecipitation reactions on the surfaces of eggshell samples in the hydrothermal system.Mg substitution in calcite resulted in formation ofβ-TCP nanocrystals instead of HA crystals through ion-exchange reactions.BCP samples with different compositions(28.6-77.8 wt.%β-TCP)were produced by controlling particle sizes of eggshells for hydrothermal reactions.The larger particles lead to the larger proportion ofβ-TCP in the BCP composition.Therefore,Mg substitution and particle size had synergetic effects on the hydrothermal synthesis of BCP using chicken eggshells through balance of ion-exchange and dissolution-reprecipitation reactions.Cell culture results showed that the BCP products were non-cytotoxic to MC3 T3-E1 cells,which may be used for bone substitute materials in future.展开更多
An improved two-step process for converting carbohydrate biomass to acetic acid under hydrothermal conditions is proposed. The first step consists of the production of lactic acid from carbohydrate biomass, and the se...An improved two-step process for converting carbohydrate biomass to acetic acid under hydrothermal conditions is proposed. The first step consists of the production of lactic acid from carbohydrate biomass, and the second step consists of conversion of the lactic acid obtained in the first step to acetic acid using CuO as an oxidant. The results indicated that CuO as an oxidant in the second step can significantly improve the production of high-purity acetic acid from lactic acid, and the maximum yield of acetic acid was 61%, with a purity of 90%. The yield of acetic acid obtained using the improved two-step hydrothermal process from carbohydrate biomass, such as glucose, cellulose and starch, was greater than that obtained using traditional two-step process with H_2O_2 or O_2. In addition, a proposed pathway for the production of acetic acid from lactic acid in the second step with CuO was also discussed. The present study provides a useful two-step process for the production of acetic acid from carbohydrate biomass.展开更多
An efficient process for the conversion of dimethyl oxalateinto ethylene glycol with high selectivity and high yield over CuO was investigated. In situ formed Cu as a true catalytically active species showed a good ca...An efficient process for the conversion of dimethyl oxalateinto ethylene glycol with high selectivity and high yield over CuO was investigated. In situ formed Cu as a true catalytically active species showed a good catalytic performance for DMO conversion to produce EG in 95% yield.展开更多
The effects of additives and precipitants on the syntheses of doped LaCrO3 (lanthanum chromites) were studied by hydrothermal reaction at temperature ranges of 100℃ to 230℃. LaCrO3 nanopowders were synthesized by hy...The effects of additives and precipitants on the syntheses of doped LaCrO3 (lanthanum chromites) were studied by hydrothermal reaction at temperature ranges of 100℃ to 230℃. LaCrO3 nanopowders were synthesized by hydrothermal methods using several types of precipitants such as NaOH, KOH, NH4OH, and NH2CONH2. The influence of Sr, Ca and Co doping on the lanthanum chromites prepared by hydrothermal method were investigated. The synthesized nanopowders were characterized by means of XRD, SEM and densitometer. The electrical conductivity of the doped LaCrO3 was studied at 750℃ in air by a DC four point probe method. The particles size of undoped LaCrO3 nanopowder was approximately 100 nm when using KOH as a precipitant. The relative density of lanthanum chromite doped with calcium and cobalt is over 97%. The highest electrical conductivity of La0.62Ca0.38Co0.18Cr0.82O3 was 32.75 S/cm at 750℃ in air, which is 30 times higher than undoped LaCrO3. The density and electrical conductivity are increased by doping cobalt and calcium on the LaCrO3.展开更多
Three clay samples with different mineral compositions (kaolinite, smectite-kaoline, and smectite-rich) were used for zeolite synthesis using the method of hydrothermal reactions after fusion with NaOH. The conditions...Three clay samples with different mineral compositions (kaolinite, smectite-kaoline, and smectite-rich) were used for zeolite synthesis using the method of hydrothermal reactions after fusion with NaOH. The conditions of hydrothermal crystallization (zeolitization) were found to be at temperature of 100°C, and time span between 72 h and 96 h for kaoline and smectite-rich samples, while 48 h for the smectite-kaolinite sample. The results indicate that zeolites began to crystallize from clay samples after 48 h, and crystallization increased with increasing time. The synthetic materials have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR) and thermogravimetric (DTA/TGA) analysis. The results indicate that low silica NaX-faujasite type with well-developed octahedral and cubic crystals was synthesized from the three samples. No big difference in the characterization between the three synthetic materials was detected, but smectite-kaolinite sample as raw material was relatively better in crystallization of synthetic zeolite. Applications of the synthetic materials in the removal of heavy metals proved that the synthetic faujasite has strong effect for removing of Cr3+, Co2+, Ni2+ and Mn2+ from aqueous solution.展开更多
Two distinct copper coordination polymers, namely [Cu^Ⅱ2(2,5-pydc)2(bpp)2]·H2O(1) and Cu2^ⅠCu^Ⅱ(2,5-pydc)2(bpp)2(2)(2,5-pydc = pyridine-2,5-dicarboxylic acid, bpp = 1,3-bi(4-pyridyl)propane), h...Two distinct copper coordination polymers, namely [Cu^Ⅱ2(2,5-pydc)2(bpp)2]·H2O(1) and Cu2^ⅠCu^Ⅱ(2,5-pydc)2(bpp)2(2)(2,5-pydc = pyridine-2,5-dicarboxylic acid, bpp = 1,3-bi(4-pyridyl)propane), have been successfully synthesized through hydrothermal conditions under different temperatures. Single-crystal X-ray structural analysis revealed that both complexes 1 and 2 are 3D frameworks. Complex 1 is an 8-connected 2-fold interpenetrating network based on [Cu(2,5-pydc)]4 molecular building block(MBB), and also can be simplified as a 4-connected net if the Cu(Ⅱ) ion is regarded as an independent node, whereas 2 shows a(4,4)-connected non-interpenetrated framework which contains mixed valence Cu(Ⅰ/Ⅱ) centers. The results demonstrate that temperature plays a significant role in the final structures of the complexes.展开更多
基金supported by the National Key Research and Development Program of China from Ministry of Science and Technology(2016YFC1100502)Key Research Program of Frontier Sciences(QYZDJ-SSW-JSC031)from Chinese Academy of Sciences(CAS)+1 种基金Key Research and Development Program of Liaoning Province(2017105005)Shenyang Key R&D and Technology Transfer Program(Z17-7-023)。
文摘Magnesium(Mg^2+))ion plays important roles in biomineralization of bone,teeth and calcium carbonate skeletons.Herein,chicken eggshells mainly comprising of Mg-calcite nanocrystals(Mg/(Mg+Ca)2.0 mol.%)were used to fabricate biphasic calcium phosphate(BCP),a mixture of hydroxyapatite(HA)and p-tricalcium phosphate(p-TCP)nanocrystals,through hydrothermal reactions at 200℃for 24 h.Our results indicated thatβ-TCP nanocrystals formed through the ion-exchange reactions of Mg-calcite,while HA nanocrystals were mainly produced by dissolution-reprecipitation reactions on the surfaces of eggshell samples in the hydrothermal system.Mg substitution in calcite resulted in formation ofβ-TCP nanocrystals instead of HA crystals through ion-exchange reactions.BCP samples with different compositions(28.6-77.8 wt.%β-TCP)were produced by controlling particle sizes of eggshells for hydrothermal reactions.The larger particles lead to the larger proportion ofβ-TCP in the BCP composition.Therefore,Mg substitution and particle size had synergetic effects on the hydrothermal synthesis of BCP using chicken eggshells through balance of ion-exchange and dissolution-reprecipitation reactions.Cell culture results showed that the BCP products were non-cytotoxic to MC3 T3-E1 cells,which may be used for bone substitute materials in future.
基金supported by the National Natural Science Foundation of China(No.21277091)the State Key Program of National Natural Science Foundation of China(No.21436007)+2 种基金key Basic Research Projects of Science and Technology Commission of Shanghai(14JC1403100)the Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning(ZXDF160002)the Project-sponsored by SRF for ROCS,SEM(BG1600002)
文摘An improved two-step process for converting carbohydrate biomass to acetic acid under hydrothermal conditions is proposed. The first step consists of the production of lactic acid from carbohydrate biomass, and the second step consists of conversion of the lactic acid obtained in the first step to acetic acid using CuO as an oxidant. The results indicated that CuO as an oxidant in the second step can significantly improve the production of high-purity acetic acid from lactic acid, and the maximum yield of acetic acid was 61%, with a purity of 90%. The yield of acetic acid obtained using the improved two-step hydrothermal process from carbohydrate biomass, such as glucose, cellulose and starch, was greater than that obtained using traditional two-step process with H_2O_2 or O_2. In addition, a proposed pathway for the production of acetic acid from lactic acid in the second step with CuO was also discussed. The present study provides a useful two-step process for the production of acetic acid from carbohydrate biomass.
基金financial support from the State Key Program of National Natural Science Foundation of China(No.21436007)Key Basic Research Projects of Science and Technology Commission of Shanghai(14JC1403100)+2 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(ZXDF160002)the Projectsponsored by SRF for ROCS,SEM(BG1600002)State Key Laboratory of Fine Chemicals(KF1411)
文摘An efficient process for the conversion of dimethyl oxalateinto ethylene glycol with high selectivity and high yield over CuO was investigated. In situ formed Cu as a true catalytically active species showed a good catalytic performance for DMO conversion to produce EG in 95% yield.
文摘The effects of additives and precipitants on the syntheses of doped LaCrO3 (lanthanum chromites) were studied by hydrothermal reaction at temperature ranges of 100℃ to 230℃. LaCrO3 nanopowders were synthesized by hydrothermal methods using several types of precipitants such as NaOH, KOH, NH4OH, and NH2CONH2. The influence of Sr, Ca and Co doping on the lanthanum chromites prepared by hydrothermal method were investigated. The synthesized nanopowders were characterized by means of XRD, SEM and densitometer. The electrical conductivity of the doped LaCrO3 was studied at 750℃ in air by a DC four point probe method. The particles size of undoped LaCrO3 nanopowder was approximately 100 nm when using KOH as a precipitant. The relative density of lanthanum chromite doped with calcium and cobalt is over 97%. The highest electrical conductivity of La0.62Ca0.38Co0.18Cr0.82O3 was 32.75 S/cm at 750℃ in air, which is 30 times higher than undoped LaCrO3. The density and electrical conductivity are increased by doping cobalt and calcium on the LaCrO3.
文摘Three clay samples with different mineral compositions (kaolinite, smectite-kaoline, and smectite-rich) were used for zeolite synthesis using the method of hydrothermal reactions after fusion with NaOH. The conditions of hydrothermal crystallization (zeolitization) were found to be at temperature of 100°C, and time span between 72 h and 96 h for kaoline and smectite-rich samples, while 48 h for the smectite-kaolinite sample. The results indicate that zeolites began to crystallize from clay samples after 48 h, and crystallization increased with increasing time. The synthetic materials have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR) and thermogravimetric (DTA/TGA) analysis. The results indicate that low silica NaX-faujasite type with well-developed octahedral and cubic crystals was synthesized from the three samples. No big difference in the characterization between the three synthetic materials was detected, but smectite-kaolinite sample as raw material was relatively better in crystallization of synthetic zeolite. Applications of the synthetic materials in the removal of heavy metals proved that the synthetic faujasite has strong effect for removing of Cr3+, Co2+, Ni2+ and Mn2+ from aqueous solution.
基金supported by the application basis research key project of Yunnan Province science and technology department(201401CB00299)the major project of Qujing Normal University(2012ZD002)
文摘Two distinct copper coordination polymers, namely [Cu^Ⅱ2(2,5-pydc)2(bpp)2]·H2O(1) and Cu2^ⅠCu^Ⅱ(2,5-pydc)2(bpp)2(2)(2,5-pydc = pyridine-2,5-dicarboxylic acid, bpp = 1,3-bi(4-pyridyl)propane), have been successfully synthesized through hydrothermal conditions under different temperatures. Single-crystal X-ray structural analysis revealed that both complexes 1 and 2 are 3D frameworks. Complex 1 is an 8-connected 2-fold interpenetrating network based on [Cu(2,5-pydc)]4 molecular building block(MBB), and also can be simplified as a 4-connected net if the Cu(Ⅱ) ion is regarded as an independent node, whereas 2 shows a(4,4)-connected non-interpenetrated framework which contains mixed valence Cu(Ⅰ/Ⅱ) centers. The results demonstrate that temperature plays a significant role in the final structures of the complexes.