This work presents new experimental results on the kinetics of mineral dissolution in near-critical and supercritical water in a temperature range (T) from 25 to 400°C and a constant pressure of 23 MPa. Kinetic e...This work presents new experimental results on the kinetics of mineral dissolution in near-critical and supercritical water in a temperature range (T) from 25 to 400°C and a constant pressure of 23 MPa. Kinetic experiments were carried out by using a flow reactor (packed bed reactor) of an open system. The dissolution rates of albite and magnetite were measured under these experimental conditions. Na, Al and Si release rates for albite dissolution in water were measured as a function of the temperature and flow velocity in the reaction system. The maximum release rates of Na, Al and Si of albite dissolution in the hydrothermal flow systems under different flow velocities were always obtained at 300°C, that is to say, the maximum albite dissolution rates in the flow systems, regardless of different flow rates, were repeatedly measured at 300°C. Results indicate a wide fluctuation in albite dissolution rates occurring close to the critical point of water. The dissolution rates increased when the temperatures increased from 25 to 300°C and decreased when the temperatures increase from 300 to 400°C. At some flow velocities, the dissolution rates rose as the temperature surpassed 374°C. Albite dissolution was incongruent in water at most temperatures. It was only at 300°C that albite dissolution was congruent. The albite dissolution from 25 to 300°C (at 23 MPa) will change from incongruent to congruent, whereas from subcritical 300 to 400°C (at 23 MPa), the dissolution will change from congruent to incongruent. The release ratio of Al/Si (or Na/Si) is positive at T<300°C, and it is negative at T>300°C. The dissolution rates of magnetite in water increased with increasing T until T at the critical point of water or around it. The authors believe that this is caused by the wide fluctuations in water properties under the conditions from the near-critical to supercritical state.展开更多
The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morpholo...The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.展开更多
The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylf...The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA). The decomposition kinetics of 5-HMF and stability of LA in HTLW were further investigated. A kinetic model for glucose decomposition was proposed accordingly. In the model, a series of first-order reactions with the consideration of parallel by-reactions were used to illustrate the decomposition of glucose. The decomposition activation energies of glucose, 5-HMF, and LA were evaluated as 118.85, 95.40, and 31.29 kJ·mol^-1, respectively.展开更多
基金We would like to thank the Ministry of Science and Technology and the Ministry of Land and Resources for supporting our projectThe experimental results presented in this paper were obtained with the financial support of GTB basic research fund 9501115+1 种基金the“Climbing Project”95-Pre-39,G1999043212National Natural ScienceFoundation of China grant 29673008.
文摘This work presents new experimental results on the kinetics of mineral dissolution in near-critical and supercritical water in a temperature range (T) from 25 to 400°C and a constant pressure of 23 MPa. Kinetic experiments were carried out by using a flow reactor (packed bed reactor) of an open system. The dissolution rates of albite and magnetite were measured under these experimental conditions. Na, Al and Si release rates for albite dissolution in water were measured as a function of the temperature and flow velocity in the reaction system. The maximum release rates of Na, Al and Si of albite dissolution in the hydrothermal flow systems under different flow velocities were always obtained at 300°C, that is to say, the maximum albite dissolution rates in the flow systems, regardless of different flow rates, were repeatedly measured at 300°C. Results indicate a wide fluctuation in albite dissolution rates occurring close to the critical point of water. The dissolution rates increased when the temperatures increased from 25 to 300°C and decreased when the temperatures increase from 300 to 400°C. At some flow velocities, the dissolution rates rose as the temperature surpassed 374°C. Albite dissolution was incongruent in water at most temperatures. It was only at 300°C that albite dissolution was congruent. The albite dissolution from 25 to 300°C (at 23 MPa) will change from incongruent to congruent, whereas from subcritical 300 to 400°C (at 23 MPa), the dissolution will change from congruent to incongruent. The release ratio of Al/Si (or Na/Si) is positive at T<300°C, and it is negative at T>300°C. The dissolution rates of magnetite in water increased with increasing T until T at the critical point of water or around it. The authors believe that this is caused by the wide fluctuations in water properties under the conditions from the near-critical to supercritical state.
基金Project(2652014017) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.
基金Supported by the National Natural Science Foundation of China (20674068) and the Natural Science Foundation of Zhejiang Province (Y405157).
文摘The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA). The decomposition kinetics of 5-HMF and stability of LA in HTLW were further investigated. A kinetic model for glucose decomposition was proposed accordingly. In the model, a series of first-order reactions with the consideration of parallel by-reactions were used to illustrate the decomposition of glucose. The decomposition activation energies of glucose, 5-HMF, and LA were evaluated as 118.85, 95.40, and 31.29 kJ·mol^-1, respectively.