Four different hematite (-Fe2O3) nanopowders with various morphologi es have been synthesized in the presence of surfactant (HPC) via hydrothermal ro ute at 180 ℃, using four kinds of iron salts, Fe2(SO4)3, FeC2O4, F...Four different hematite (-Fe2O3) nanopowders with various morphologi es have been synthesized in the presence of surfactant (HPC) via hydrothermal ro ute at 180 ℃, using four kinds of iron salts, Fe2(SO4)3, FeC2O4, FeSO4 and (NH4 )3Fe(C2O4)3, as precursor materials. The products were characterized by means of X-ray diffraction (XRD), transmission electron micrograph (TEM), Fourier transf orm infrared spectroscopy (FTIR) and magnetization measurements. The hysteresis measurements show that the products exhibit weak ferromagnetic property at room temperature. It is concluded that the different precursor materials and the pres ence of the surfactant are important factors that exert significant effects on t he morphologies and magnetic properties of the products.展开更多
The title complex (C26H18CuN206, Mr= 517.96) has been synthesized by the reaction of α-furanacrylic acid with 1,10-phenanthroline (phen) in the solvent mixture of water and methanol. Crystal data: monoclinic, sp...The title complex (C26H18CuN206, Mr= 517.96) has been synthesized by the reaction of α-furanacrylic acid with 1,10-phenanthroline (phen) in the solvent mixture of water and methanol. Crystal data: monoclinic, space group C2/c with a = 2.2927(4), b = 1.01248(18), c = 1.05061(18) nm, β = 111.188(3)°, V= 2.274(7) nm^3, Dc = 1.513 g/cm^3, Z = 4, F(000) = 1060,μ = 1.007mm^-1, R = 0.0320 and ωR = 0.0781. The crystal structural analysis shows that the copper atom is coordinated with four oxygen atoms from two α-furacrylic acids and two nitrogen atoms from 1,10-phenanthroline, giving a distorted octahedral coordination geometry. The result of electrochemical analysis shows that the electron transfer in the electrode reaction is quasi-reversible.展开更多
文摘Four different hematite (-Fe2O3) nanopowders with various morphologi es have been synthesized in the presence of surfactant (HPC) via hydrothermal ro ute at 180 ℃, using four kinds of iron salts, Fe2(SO4)3, FeC2O4, FeSO4 and (NH4 )3Fe(C2O4)3, as precursor materials. The products were characterized by means of X-ray diffraction (XRD), transmission electron micrograph (TEM), Fourier transf orm infrared spectroscopy (FTIR) and magnetization measurements. The hysteresis measurements show that the products exhibit weak ferromagnetic property at room temperature. It is concluded that the different precursor materials and the pres ence of the surfactant are important factors that exert significant effects on t he morphologies and magnetic properties of the products.
基金the Foundation of Education Committee of Hunan Province (06C195)the Research Award Fund for Outstanding Young Teachers of Hengyang Normal University (2006)the Construct Program of the.Key Discipline in Hunan Province.
文摘The title complex (C26H18CuN206, Mr= 517.96) has been synthesized by the reaction of α-furanacrylic acid with 1,10-phenanthroline (phen) in the solvent mixture of water and methanol. Crystal data: monoclinic, space group C2/c with a = 2.2927(4), b = 1.01248(18), c = 1.05061(18) nm, β = 111.188(3)°, V= 2.274(7) nm^3, Dc = 1.513 g/cm^3, Z = 4, F(000) = 1060,μ = 1.007mm^-1, R = 0.0320 and ωR = 0.0781. The crystal structural analysis shows that the copper atom is coordinated with four oxygen atoms from two α-furacrylic acids and two nitrogen atoms from 1,10-phenanthroline, giving a distorted octahedral coordination geometry. The result of electrochemical analysis shows that the electron transfer in the electrode reaction is quasi-reversible.